×

zbMATH — the first resource for mathematics

Poles and zeroes of nonlinear control systems. (English) Zbl 1265.93117
Summary: During the last ten years, the concepts of “poles” and “zeros” for linear control systems have been revisited by using modern commutative algebra and module theory as a powerful substitute for the theory of polynomial matrices. Very recently, these concepts have been extended to multidimensional linear control systems with constant coefficients. Our purpose is to use the methods of “algebraic analysis” in order to extend these concepts to the variable coefficients case and, as a byproduct, to the nonlinear situation. We also provide nontrivial explicit examples.
MSC:
93B55 Pole and zero placement problems
93C10 Nonlinear systems in control theory
93B25 Algebraic methods
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Bourbaki N.: Algèbre Commutative. Chap. I-IV. Masson, Paris 1985 · Zbl 1107.13002 · doi:10.1007/978-3-540-34395-0
[2] Bourlès H., Fliess M.: Finite poles and zeros of linear systems: an intrinsic approach. Internat. J. Control 68 (1997), 4, 897-922 · Zbl 1034.93009 · doi:10.1080/002071797223398
[3] Gerdt V. P., Blinkov Y. A.: Minimal involutive bases. Math. Comput. Simulations 45 (1998), 543-560 · Zbl 1017.13501 · doi:10.1016/S0378-4754(97)00128-6 · arxiv:math/9912029
[4] Kunz E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Basel 1985 · Zbl 0563.13001
[5] Maisonobe P., Sabbah C.: D-Modules Cohérents et Holonomes. Travaux en Cours, 45, Hermann, Paris 1993 · Zbl 0824.00033
[6] Matsumura H.: Commutative Ring Theory. (Cambridge Studies in Advanced Mathematics 8.) Cambridge University Press, Cambridge 1986 · Zbl 0666.13002
[7] Pommaret J.-F.: Controllability of nonlinear multidimensional control. Nonlinear Control in the Year 2000, Proceedings NCN 2000 (A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, Springer, Paris 2000 · Zbl 1127.93334 · doi:10.1007/BFb0110306
[8] Pommaret J.-F., Quadrat A.: Algebraic analysis of linear multidimensional control systems. IMA J. Math. Control Inform. 16 (1999), 275-297 · Zbl 1158.93319 · doi:10.1093/imamci/16.3.275
[9] Pommaret J.-F., Quadrat A.: Localization and parametrization of linear multidimensional control systems. Systems Control Lett. 37 (1999), 247-260 · Zbl 0948.93016 · doi:10.1016/S0167-6911(99)00030-4
[10] Sain M. K., Schrader C. B.: Research on systems zeros: a survey. Internat. J. Control 50 (1989), 4, 1407-1433 · Zbl 0686.93036 · doi:10.1080/00207178908953438
[11] Wood J., Oberst, U., Owens D.: A behavioural approach to the pole structure of 1D and \(n\)D linear systems. SIAM J. Control Optim. 38 (2000), 2, 627-661 · Zbl 0979.93019 · doi:10.1137/S036301299733213X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.