×

zbMATH — the first resource for mathematics

Nonlinear bounded control for time-delay systems. (English) Zbl 1265.93131
Summary: A method to derive a nonlinear bounded state feedback controller for a linear continuous-time system with time-delay in the state is proposed. The controllers are based on an \(e\)-parameterized family of algebraic Riccati equations or on an \(e\)-parameterized family of LMI optimization problems. Hence, nested ellipsoidal neighborhoods of the origin are determined. Thus, from the Lyapunov-Krasovskii theorem, the uniform asymptotic stability of the closed-loop system is guaranteed and a certain performance level is attained through a quadratic cost function.

MSC:
93C10 Nonlinear systems in control theory
93D20 Asymptotic stability in control theory
PDF BibTeX XML Cite
Full Text: EuDML Link
References:
[1] Bernstein D. S., Michel A. N.: Special issue: Saturating actuators. Internat. J. Robust and Nonlinear Control 5 (1995), 375-380 · Zbl 0828.00026
[2] Siljak D. D.: Large Scale System: Stability and Structure. North Holland, New York 1978 · Zbl 0384.93002
[3] Chen B. S., Wang S. S., Lu H. C.: Stabilization of time-delay systems containing saturating actuators. Internat. J. Control 47 (1988), 867-881 · Zbl 0636.93063
[4] Dugard L., (eds.) E. I. Verriest: Stability and Control of Time-delay Systems. (Lecture Notes in Computer Science 228.), Springer-Verlag, London 1997 · Zbl 0901.00019
[5] Garcia G., Tarbouriech S., Suarez, R., Ramirez J. Alvarez: Nonlinear bounded control for norm-bounded uncertain system. IEEE Trans. Automat. Control 44 (1999), 6, 1254-1258 · Zbl 1136.93335
[6] Hennet J. C., Tarbouriech S.: Stability and stabilization of delay differential systems. Automatica 33 (1997), 347-354 · Zbl 0889.93049
[7] Hmamed A., Benzaouia, A., Bensalah H.: Regulator problem for linear continuous-time delay systems with nonsymmetrical constrained control. IEEE Trans. Automat. Control 40 (1995), 1615-1619 · Zbl 0835.93048
[8] Kapila V., Haddad W. M.: Robust stabilization for systems with parametric uncertainty and time delay. J. Franklin Inst. 336 (1999), 473-480 · Zbl 0978.93068
[9] Kharitonov V.: Robust stability analysis of time-delay systems: a survey. Proc. IFAC Symposium on System Structure and Control, Nantes 1998
[10] Klai M., Tarbouriech, S., Burgat C.: Some independent-time-delay stabilization of linear systems with saturating controls. Proc. IEE Control’94, Coventry 1994, pp. 1358-1363
[11] Lafay J. F., Conte G.: Analysis and design methods for delay systems. Proc. 34th IEEE Conference on Decision and Control, New Orleans 1995, pp. 2035-2069
[12] Niculescu S.-I., Dion J.-M., Dugard L.: Robust stabilization for uncertain time-delay systems containing saturating actuators. IEEE Trans. Automat. Control 41 (1996), 742-747 · Zbl 0851.93067
[13] Petersen I. R.: A stabilization algorithm for a class of uncertain linear systems. Systems Control Lett. 8 (1987), 351-357 · Zbl 0618.93056
[14] Stoorvogel A. A., Saberi A.: Special issue: Control problems with constraints. Internat. J. Robust and Nonlinear Control 9 (1999), 583-717 · Zbl 0930.00029
[15] Su T. J., Liu P. L., Tsay J. T.: Stabilization of delay-dependence for saturating actuator systems. Proc. 30th IEEE Conference on Decision and Control, Brighton 1991, pp. 2891-2892
[16] Suarez R., Alvarez-Ramirez, J., Solis-Daun J.: Linear systems with bounded inputs: global stabilization with eigenvalue placement. Internat. J. Robust and Nonlinear Control 7 (1997), 835-845 <a href=”http://dx.doi.org/10.1002/(SICI)1099-1239(199709)7:93.0.CO;2-P” target=”_blank”>DOI 10.1002/(SICI)1099-1239(199709)7:93.0.CO;2-P | · Zbl 0888.93050
[17] Tarbouriech S.: Local stabilization of continuous-time delay systems with bounded inputs. Stability and Control of Time-delay Systems (L. Dugard and E. I. Verriest, Lecture Notes in Computer Science 228), Springer-Verlag, London 1997, pp. 302-317 · Zbl 0918.93044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.