×

zbMATH — the first resource for mathematics

Approximation of control laws with distributed delays: a necessary condition for stability. (English) Zbl 1265.93148
Summary: The implementation of control laws with distributed delays that assign the spectrum of unstable linear multivariable systems with delay in the input requires an approximation of the integral. A necessary condition for stability of the closed-loop system is shown to be the stability of the controller itself. An illustrative multivariable example is given.

MSC:
93C35 Multivariable systems, multidimensional control systems
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Artstein Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Automat. Control AC-27 (1982), 4, 869-879 · Zbl 0486.93011 · doi:10.1109/TAC.1982.1103023
[2] Brethé D., Loiseau J. J.: An effective algorithm for finite spectrum assignment of single-input systems with delays. Math. Comput. Simulation 45 (1998), 339-348 · Zbl 1017.93506 · doi:10.1016/S0378-4754(97)00113-4
[3] Bellman R., Cooke K. L.: Differential Difference Equations. Academic Press, London 1963 · Zbl 0163.10501
[4] Engelborghs K., Dambrine, M., Roose D.: Limitations of a class of stabilization methods for delay systems. IEEE Trans. Automat. Control AC-46 (2001), 2, 336-339 · Zbl 1056.93607 · doi:10.1109/9.905705
[5] Gantmacher F. R.: The Theory of Matrices. Vol. 1. AMS Chelsea Publishing, New York 1959 · Zbl 0927.15002
[6] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable bezout factorizations and feedback control of linear time delay systems. Internat. J. Control 43 (1986), 3, 837-857 · Zbl 0599.93047 · doi:10.1080/00207178608933506
[7] Kolmanovski V. B., Nosov V. R.: Stability of Functional Differential Equations. Academic Press, New York 1986 · Zbl 0824.34081
[8] Manitius A. Z., Olbrot A. W.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Automat. Control AC-24 (1979), 4, 541-553 · Zbl 0425.93029 · doi:10.1109/TAC.1979.1102124
[9] Mathews J. H.: Numerical Methods for Mathematics, Science, and Engineering. Prentice-Hall, Englewood Cliffs, N.J. 1992 · Zbl 0753.65002
[10] Mondié S., Santos O.: Une condition nécessaire pour l’implantation de lois de commande à retards distribués. Conférence Internationale Francophone d’Automatique, Lille 2000, pp. 201-206
[11] Morse A. S.: Ring models for delay-differential systems. Automatica 12 (1976), 529-531 · Zbl 0345.93023 · doi:10.1016/0005-1098(76)90013-3
[12] Palmor Z. J.: Modified predictors. The Control Handbook (W. Levine, CRC Press, Boca Raton 1996, Section 10.9
[13] Santos O., Mondié S.: Control laws involving distributed time delays: robustness of the implementation. American Control Conference, Chicago 2000, pp. 2479-2480
[14] Smith O. J. M.: Closer control of loops with dead time. Chem. Engrg. Prog. 53 (1959), 217-219
[15] Assche V. Van, Dambrine M., Lafay J. F., Richard J. P.: Some problems arising in the implementation of distributed-delay control laws. Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
[16] Vidyasagar M.: Control System Synthesis. MIT Press, Cambridge, MA 1985 · Zbl 0655.93001
[17] Watanabe K., Ito M.: A process model control for linear systems with delay. IEEE Trans. Automat. Control AC-26 (1981), 6, 1261-1268 · Zbl 0471.93035 · doi:10.1109/TAC.1981.1102802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.