zbMATH — the first resource for mathematics

Disturbance decoupling of nonlinear MISO systems by static measurement feedback. (English) Zbl 1265.93185
Summary: This paper highlights the role of the rank of a differential one-form in the solution of such nonlinear control problems via measurement feedback as disturbance decoupling problem of Multi-Input Single-Output (MISO) systems. For the later problem, some necessary conditions and sufficient conditions are given.
93C73 Perturbations in control/observation systems
93C10 Nonlinear systems in control theory
93D15 Stabilization of systems by feedback
93B11 System structure simplification
Full Text: Link
[1] Andiarti R., Moog C. H.: Output feedback disturbance decoupling in nonlinear systems. IEEE Trans. Automat. Control 41 (1996), 1683-1689 · Zbl 0863.93039
[2] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A.: Exterior Differential Systems. Springer-Verlag, New York 1991 · Zbl 0726.58002
[3] Conte G., Moog C. H., Perdon A. M.: Nonlinear Control Systems: An Algebraic Setting. (Lecture Notes in Control and Information Science 242.) Springer-Verlag, London 1999 · Zbl 0920.93002
[4] Hermes H.: Involutive subdistributions and canonical forms for distributions and control systems. Theory and Applications of Nonlinear Control Systems (C. I. Byrnes and A. Lindquist, North-Holland, Amsterdam 1986, pp. 123-135 · Zbl 0621.93023
[5] Huijberts H. J. C., Colpier, L., Moreau P.: Nonlinear input-output decoupling by static output feedback. Proc. 3rd European Control Conference (EEC’95), Rome 1995, pp. 1057-1062
[6] Isidori A.: Nonlinear Control Systems. Second edition. Springer-Verlag, Berlin 1989 · Zbl 0931.93005
[7] Isidori A., Krener A. J., Giorgi, C. Gori, Monaco S.: Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Automat. Control 26 (1981), 331-345 · Zbl 0481.93037
[8] Nijmeijer H., Schaft A. J. van der: Nonlinear dynamical control systems. Springer-Verlag, New York 1990 · Zbl 0701.93001
[9] Xia X., Moog C. H.: Disturbance decoupling by measurement feedback for SISO nonlinear systems. IEEE Trans. Automat. Control 44 (1999), 1425-1429 · Zbl 0954.93016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.