# zbMATH — the first resource for mathematics

Motivic Milnor fiber at infinity and composition with a non-degenerate polynomial. (Fibre de Milnor motivique à l’infini et composition avec un polynôme non dégénéré.) (French. English summary) Zbl 1266.14008
Let $$P$$ be a Laurent polynomial in $$d$$ variables with coefficients in a field of characteristic zero and non-degenerated relative to its Newton polyhedron $$\Gamma$$ at infinity. Let $$f_1,\dots,f_d$$ be non-constant functions defined on smooth varieties. The author computes the motivic Milnor fiber at infinity in the sense [C.R., Math., Acad. Sci. Paris 348, No. 7–8, 419–422 (2010; Zbl 1195.14028)] for the superposition $$P(f_1,\dots, f_d)$$ in terms of generalized motivic nearby cycles at infinity associated with the functions $$f_i$$, polynomial $$P$$ and faces of $$\Gamma$$. In particular, he obtains a formula of Thom-Sebastiani type at infinity for $$P = x_1 + x_2$$, as well as his own formula in the case where $$f_i$$ are coordinates of $$d$$-dimensional torus (Theorem 3.3 in the author’s paper [Bull. Soc. Math. Fr. 140, No. 1, 51–100 (2012; Zbl 1266.14012)]), etc. Then a notion of motivic vanishing cycles of a function $$g$$ for the infinite value is discussed. It turns out that for Laurent polynomial $$g= x_1+\dots+x_n+1/x_1\dots x_n$$ the corresponding spectrum is equal to $$1+t+\dots+t^n,$$ that is, it coincides with the spectrum at infinity of $$g$$ considered by A. Douai and C. Sabbah [Ann. Inst. Fourier 53, No. 4, 1055–1116 (2003; Zbl 1079.32016)].
##### MSC:
 14D06 Fibrations, degenerations in algebraic geometry 32S55 Milnor fibration; relations with knot theory 14E18 Arcs and motivic integration 14R25 Affine fibrations 32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
Full Text:
##### References:
  Bittner, Franziska, On motivic zeta functions and the motivic nearby fiber, Math. Z., 249, 1, 63-83, (2005) · Zbl 1085.14020  Deligne, Pierre, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math., 44, 5-77, (1974) · Zbl 0237.14003  Denef, Jan; Loeser, François, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., 135, 1, 201-232, (1999) · Zbl 0928.14004  Denef, Jan; Loeser, François, European Congress of Mathematics, Vol. I (Barcelona, 2000), 201, Geometry on arc spaces of algebraic varieties, 327-348, (2001), Birkhäuser, Basel · Zbl 1079.14003  Douai, A.; Sabbah, C., Gauss-Manin systems, Brieskorn lattices and Frobenius structures. I, Ann. Inst. Fourier (Grenoble), 53, 4, 1055-1116, (2003) · Zbl 1079.32016  Douai, Antoine; Sabbah, Claude, Gauss-Manin systems, Brieskorn lattices and Frobenius structures. II, 1-18, (2004) · Zbl 1079.32017  Fulton, William, Intersection theory, 2, (1998), Springer-Verlag, Berlin · Zbl 0541.14005  Guibert, Gil, Espaces d’arcs et invariants d’alexander, Comment. Math. Helv., 77, 4, 783-820, (2002) · Zbl 1046.14008  Guibert, Gil; Loeser, François; Merle, Michel, Nearby cycles and composition with a nondegenerate polynomial, Int. Math. Res. Not., 31, 1873-1888, (2005) · Zbl 1093.14032  Guibert, Gil; Loeser, François; Merle, Michel, Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of steenbrink, Duke Math. J., 132, 3, 409-457, (2006) · Zbl 1173.14301  Hironaka, Heisuke, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203 ; ibid. (2), 79, 205-326, (1964) · Zbl 0122.38603  Kouchnirenko, A. G., Polyèdres de Newton et nombres de Milnor, Invent. Math., 32, 1, 1-31, (1976) · Zbl 0328.32007  Loeser, François, Algebraic geometry—Seattle 2005. Part 2, 80, Seattle lectures on motivic integration, 745-784, (2009), Amer. Math. Soc., Providence, RI · Zbl 1181.14017  Looijenga, Eduard, Motivic measures, Astérisque, 276, 267-297, (2002) · Zbl 0996.14011  Matsui, Yutaka; Takeuchi, Kiyoshi, Monodromy at infinity of polynomial map and mixed Hodge modules, arXiv :0912.5144v5 · Zbl 1314.32044  Matsui, Yutaka; Takeuchi, Kiyoshi, Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., 268, 1-2, 409-439, (2011) · Zbl 1264.14005  Pham, Frédéric, Singularities, Part 2 (Arcata, Calif., 1981), 40, Vanishing homologies and the $$n$$ variable saddlepoint method, 319-333, (1983), Amer. Math. Soc., Providence, RI · Zbl 0519.49026  Raibaut, Michel, Fibre de Milnor motivique à l’infini, C. R. Math. Acad. Sci. Paris, 348, 7-8, 419-422, (2010) · Zbl 1195.14028  Raibaut, Michel, Singularités à l’infini et intégration motivique, Thèse, Université Nice Sophia Antipolis, (2010) · Zbl 1195.14028  Raibaut, Michel, Singularités à l’infini et intégration motivique, Bull. Soc. Math. France, 140, 1, 51-100, (2012) · Zbl 1266.14012  Sabbah, Claude, Monodromy at infinity and Fourier transform, Publ. Res. Inst. Math. Sci., 33, 4, 643-685, (1997) · Zbl 0920.14003  Saito, Morihiko, Mixed Hodge modules, Publ. Res. Inst. Math. Sci., 26, 2, 221-333, (1990) · Zbl 0727.14004  Steenbrink, Joseph; Zucker, Steven, Variation of mixed Hodge structure. I, Invent. Math., 80, 3, 489-542, (1985) · Zbl 0626.14007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.