Cortiñas, Guillermo; Thom, Andreas Algebraic geometry of topological spaces. I. (English) Zbl 1266.19003 Acta Math. 209, No. 1, 83-131 (2012). The paper deals with homotopy invariance of functors on algebras over the field \(\mathbb C\) of complex numbers. Let \(M\) be a countable cancellative torsion-free seminormal abelian monoid, \(X\) a compact Hausdorff space. The first main result of the paper is local triviality of the bundles of finitely generated free \(\mathbb C[M]\)-modules over \(X\) that are direct summands of trivial bundles. In particular, if \(X\) is contractible then every finitely generated projective module over \(C(X)[M]\) is free. The case \(M=\mathbb N_0^n\) gives a version of the Quillen-Suslin theorem on freeness of finitely generated projective modules over the Laurent polynomial ring, and the case \(M=\mathbb Z^n\) allows the authors to prove the J. Rosenberg’s conjecture on homotopy invariance of the negative algebraic \(K\)-theory groups of \(C(X)\). The second main result of the paper is the following criterion for homotopy invariance. Let \(F\) be a functor on the category \(\mathfrak C\mathfrak o\mathfrak m\mathfrak m/\mathbb C\) of commutative \(\mathbb C\)-algebras with values in the category \(\mathfrak A\mathfrak b\) of abelian groups. If \(F\) is split-exact on \(C^*\)-algebras, vanishes on coordinate rings of smooth affine varieties, and commutes with filtering colimits then the functor \(X\mapsto F(C(X))\) is homotopy invariant. This result is used to derive a vanishing theorem and some other useful results for homology theories, in particular, for Hochschild and cyclic homology. Reviewer: Vladimir M. Manuilov (Moskva) Cited in 7 Documents MSC: 19D10 Algebraic \(K\)-theory of spaces 14P10 Semialgebraic sets and related spaces 19D35 Negative \(K\)-theory, NK and Nil 19D55 \(K\)-theory and homology; cyclic homology and cohomology Keywords:homotopy invariance; algebraic \(K\)-theory; semialgebraic set; homology theories PDF BibTeX XML Cite \textit{G. Cortiñas} and \textit{A. Thom}, Acta Math. 209, No. 1, 83--131 (2012; Zbl 1266.19003) Full Text: DOI arXiv References: [1] Bass, H., Some problems in ”classical” algebraic K-theory, in Algebraic K-Theory, II: ”Classical” Algebraic K-Theory and Connections with Arithmetic (Seattle, WA, 1972), Lecture Notes in Math., 342, pp. 3–73. Springer, Berlin–Heidelberg, 1973. [2] Basu, S., Pollack, R. & Roy, M. F., Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, 10. Springer, Berlin–Heidelberg, 2003. · Zbl 1031.14028 [3] Beĭlinson, A. A., Higher regulators and values of L-functions, in Current Problems in Mathematics, Vol. 24, Itogi Nauki i Tekhniki, pp. 181–238. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984 (Russian). [4] Bourbaki, N., Éléments de mathématique. Espaces vectoriels topologiques. Chapitres 1 à 5. Masson, Paris, 1981. [5] Brumfiel, G. W., Quotient spaces for semialgebraic equivalence relations. Math. Z., 195 (1987), 69–78. · Zbl 0601.14017 [6] Calder, A. & Siegel, J., Homotopy and Kan extensions, in Categorical Topology (Mannheim, 1975), Lecture Notes in Math., 540, pp. 152–163. Springer, Berlin–Heidelberg, 1976. [7] – Kan extensions of homotopy functors. J. Pure Appl. Algebra, 12 (1978), 253–269. · Zbl 0416.55004 [8] Cortiñas, G., Haesemeyer, C., Walker, M. E. & Weibel, C., Bass’ NK groups and cdh-fibrant Hochschild homology. Invent. Math., 181 (2010), 421–448. · Zbl 1238.19002 [9] – A negative answer to a question of Bass. Proc. Amer. Math. Soc., 139 (2011), 1187–1200. [10] Cortiñas, G. & Thom, A., Comparison between algebraic and topological K-theory of locally convex algebras. Adv. Math., 218 (2008), 266–307. · Zbl 1142.19002 [11] Davis, J. F., Some remarks on Nil groups in algebraic K-theory. Preprint, 2008. arXiv:0803.1641 [math.KT ]. [12] Drinfeld, V., Infinite-dimensional vector bundles in algebraic geometry: an introduction, in The Unity of Mathematics, Progr. Math., 244, pp. 263–304. Birkhäuser, Boston, MA, 2006. · Zbl 1108.14012 [13] Feĭgin, B. L. & Tsygan, B. L., Additive K-theory, in K-Theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, pp. 67–209. Springer, Berlin–Heidelberg, 1987. [14] Frei, A., Kan extensions along full functors: Kan and Čech extensions of homotopy in-variant functors. J. Pure Appl. Algebra, 17 (1980), 285–292. · Zbl 0477.18003 [15] Friedlander, E. M. & Walker, M. E., Comparing K-theories for complex varieties. Amer. J. Math., 123 (2001), 779–810. · Zbl 1018.19001 [16] Geller, S. C. & Weibel, C. A., Hodge decompositions of Loday symbols in K-theory and cyclic homology. K-Theory, 8 (1994), 587–632. · Zbl 0824.19002 [17] Gersten, S. M., On the spectrum of algebraic K-theory. Bull. Amer. Math. Soc., 78 (1972), 216–219. · Zbl 0261.18014 [18] – Some exact sequences in the higher K-theory of rings, in Algebraic K-theory, I: Higher K-theories (Seattle, WA, 1972), Lecture Notes in Math., 341, pp. 211–243. Springer, Berlin–Heidelberg, 1973. [19] Gubeladze, J., The Anderson conjecture and projective modules over monoid algebras. Soobshch. Akad. Nauk Gruzin. SSR, 125 (1987), 289–291 (Russian). · Zbl 0614.13004 [20] – The Anderson conjecture and a maximal class of monoids over which projective modules are free. Mat. Sb., 135 (177) (1988), 169–185, 271 (Russian); English translation in Math. USSR-Sb., 63 (1989), 165–180. · Zbl 0654.13013 [21] – On Bass’ question for finitely generated algebras over large fields. Bull. Lond. Math. Soc., 41 (2009), 36–40. · Zbl 1166.19002 [22] Hardt, R. M., Semi-algebraic local-triviality in semi-algebraic mappings. Amer. J. Math., 102 (1980), 291–302. · Zbl 0465.14012 [23] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math., 79 (1964), 109–203, 205–326. · Zbl 0122.38603 [24] Hochschild, G., Kostant, B. & Rosenberg, A., Differential forms on regular affine algebras. Trans. Amer. Math. Soc., 102 (1962), 383–408. · Zbl 0102.27701 [25] Jouanolou, J. P., Une suite exacte de Mayer–Vietoris en K-théorie algébrique, in Algebraic K-theory, I: Higher K-theories (Seattle, WA, 1972), Lecture Notes in Math., 341, pp. 293–316. Springer, Berlin–Heidelberg, 1973. [26] Kahn, B., Algebraic K-theory, algebraic cycles and arithmetic geometry, in Handbook of K-Theory. Vol. 1, pp. 351–428. Springer, Berlin–Heidelberg, 2005. · Zbl 1115.19003 [27] Kassel, C. & Sletsjøe, A. B., Base change, transitivity and Künneth formulas for the Quillen decomposition of Hochschild homology. Math. Scand., 70 (1992), 186–192. · Zbl 0785.13003 [28] Kratzer, C., {\(\lambda\)}-structure en K-théorie algébrique. Comment. Math. Helv., 55 (1980), 233–254. · Zbl 0444.18008 [29] Loday, J.-L., Cyclic Homology. Grundlehren der Mathematischen Wissenschaften, 301. Springer, Berlin–Heidelberg, 1998. [30] Loday, J.-L. & Quillen, D., Cyclic homology and the Lie algebra homology of matrices. Comment. Math. Helv., 59 (1984), 569–591. · Zbl 0565.17006 [31] Lück, W. & Reich, H., The Baum–Connes and the Farrell–Jones conjectures in K- and L-theory, in Handbook of K-theory. Vol. 2, pp. 703–842. Springer, Berlin–Heidelberg, 2005. · Zbl 1120.19001 [32] Pedersen, E. K. & Weibel, C. A., A nonconnective delooping of algebraic K-theory, in Algebraic and Geometric Topology (New Brunswick, NJ, 1983), Lecture Notes in Math., 1126, pp. 166–181. Springer, Berlin–Heidelberg, 1985. · Zbl 0591.55002 [33] – K-theory homology of spaces, in Algebraic Topology (Arcata, CA, 1986), Lecture Notes in Math., 1370, pp. 346–361. Springer, Berlin–Heidelberg, 1989. [34] Quillen, D., Higher algebraic K-theory. I, in Algebraic K-Theory, I: Higher K-Theories (Seattle, WA, 1972), Lecture Notes in Math., 341, pp. 85–147. Springer, Berlin–Heidelberg, 1973. · Zbl 0292.18004 [35] – Projective modules over polynomial rings. Invent. Math., 36 (1976), 167–171. · Zbl 0337.13011 [36] Rosenberg, J., K and KK: topology and operator algebras, in Operator Theory: Operator Algebras and Applications(Durham, NH, 1988), Proc. Sympos. Pure Math., 51, Part 1, pp. 445–480. Amer. Math. Soc., Providence, RI, 1990. [37] – The algebraic K-theory of operator algebras. K-Theory, 12 (1997), 75–99. · Zbl 0888.19004 [38] – Comparison between algebraic and topological K-theory for Banach algebras and C * -algebras, in Handbook of K-Theory. Vol. 2, pp. 843–874. Springer, Berlin–Heidelberg, 2005. · Zbl 1123.19005 [39] Serre, J.-P., Faisceaux algébriques cohérents. Ann. of Math., 61 (1955), 197–278. · Zbl 0067.16201 [40] Soulé, C., Opérations en K-théorie algébrique. Canad. J. Math., 37 (1985), 488–550. · Zbl 0575.14015 [41] Suslin, A. A., Projective modules over polynomial rings are free. Dokl. Akad. Nauk SSSR, 229 (1976), 1063–1066 (Russian); English translation in Soviet Math. Dokl., 17 (1976), 1160–1164. · Zbl 0354.13010 [42] – On the K-theory of algebraically closed fields. Invent. Math., 73 (1983), 241–245. · Zbl 0514.18008 [43] Suslin, A. A. & Wodzicki, M., Excision in algebraic K-theory and Karoubi’s conjecture. Proc. Nat. Acad. Sci. USA, 87:24 (1990), 9582–9584. · Zbl 0738.46036 [44] – Excision in algebraic K-theory. Ann. of Math., 136 (1992), 51–122. · Zbl 0756.18008 [45] Swan, R. G., Projective modules over Laurent polynomial rings. Trans. Amer. Math. Soc., 237 (1978), 111–120. · Zbl 0404.13006 [46] – Gubeladze’s proof of Anderson’s conjecture, in Azumaya Algebras, Actions, and Modules (Bloomington, IN, 1990), Contemp. Math., 124, pp. 215–250. Amer. Math. Soc., Providence, RI, 1992. · Zbl 0742.13005 [47] Switzer, R. M., Algebraic Topology–Homotopy and Homology. Classics in Mathematics. Springer, Berlin–Heidelberg, 2002. · Zbl 1003.55002 [48] Thom, A. B., Connective E-Theory and Bivariant Homology. Ph.D. Thesis, Universität Münster, Münster, 2003. [49] Thomason, R. W. & Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories, in The Grothendieck Festschrift, Vol. III, Progr. Math., 88, pp. 247–435. Birkhäuser, Boston, MA, 1990. · Zbl 0731.14001 [50] Wagoner, J. B., Delooping classifying spaces in algebraic K-theory. Topology, 11 (1972), 349–370. · Zbl 0276.18012 [51] Weibel, C. A., Homotopy algebraic K-theory, in Algebraic K-Theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., 83, pp. 461–488. Amer. Math. Soc., Providence, RI, 1989. · Zbl 0638.18005 [52] Wodzicki, M., Excision in cyclic homology and in rational algebraic K-theory. Ann. of Math., 129 (1989), 591–639. · Zbl 0689.16013 [53] – Homological properties of rings of functional-analytic type. Proc. Nat. Acad. Sci. USA, 87:13 (1990), 4910–4911. · Zbl 0717.46063 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.