×

zbMATH — the first resource for mathematics

Proving finitely presented groups are large by computer. (English) Zbl 1266.20044
Summary: We present a theoretical algorithm that given any finite presentation of a group as input, will terminate with answer yes if and only if the group is large. We then implement a practical version of this algorithm using Magma and apply it to a range of presentations. Our main focus is on two-generator one-relator presentations, for which we have a complete picture of largeness if the relator has exponent sum zero in one generator and word length at most 12, as well as if the relator is in the commutator subgroup and has word length at most 18. Indeed, all but a tiny number of presentations define large groups. Finally, we look at fundamental groups of closed hyperbolic 3-manifolds, for which the algorithm readily determines that at least a quarter of the groups in the SnapPea closed census are large.
MSC:
20F05 Generators, relations, and presentations of groups
20-04 Software, source code, etc. for problems pertaining to group theory
57M50 General geometric structures on low-dimensional manifolds
68W30 Symbolic computation and algebraic computation
Software:
Magma; SnapPea
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Baumslag [Baumslag 69] G., J. Austral. Math. Soc. 10 pp 497– (1969) · Zbl 0214.27402
[2] Baumslag [Baumslag et al. 07] G., Groups Geom. Dyn. 1 pp 209– (2007) · Zbl 1141.20024
[3] Bestvina [Bestvina and Handel 92] M., Ann. of Math. 135 pp 1– (1992) · Zbl 0757.57004
[4] Brunner [Brunner 76] A. M., J. Algebra 42 pp 81– (1976) · Zbl 0342.20014
[5] Brunner [Brunner 80] A. M., Canad. J. Math. 32 pp 414– (1980) · Zbl 0405.20033
[6] Button [Button 07] J. O., J. Math. Soc. Japan 59 pp 351– (2007) · Zbl 1124.57001
[7] Button [Button 09] J. O., Israel J. Math. 167 pp 111– (2009) · Zbl 1204.20038
[8] Button [Button 10] J. O., Groups Geom. Dyn. pp 709– (2010) · Zbl 1248.20033
[9] Cooper [Cooper et al. 07] D., Geom. Topol. 11 pp 2265– (2007) · Zbl 1140.57002
[10] Dietze [Dietze and Schaps 74] A., Canadian J. Math. 26 pp 769– (1974) · Zbl 0271.20018
[11] Dunfield [Dunfield and Thurston 03] N. M., Geom. Topol. 7 pp 399– (2003) · Zbl 1037.57015
[12] Gersten [Gersten and Stallings 91] S. M., Proc. Amer. Math. Soc. 111 pp 309– (1991)
[13] Higman [Higman 51] G., J. London Math. Soc. 26 pp 61– (1951) · Zbl 0042.02201
[14] Holt [Holt and Rees 96] D. F., Experiment. Math. 5 pp 49– (1996) · Zbl 0867.20030
[15] Howie [Howie 98] J., J. Group Theory 1 pp 95– (1998) · Zbl 0888.20018
[16] Lackenby [Lackenby et al. 08] M., Covering Spaces of Arithmetic 3-Orbifolds (2008) · Zbl 1109.57015
[17] Lickorish [Lickorish 97] W. B. R., An Introduction to Knot Theory (1997)
[18] Lyndon [Lyndon and Schupp 77] R. C., Combinatorial Group Theory (1977)
[19] McCool [McCool and Pietrowski 71] J., J. Algebra 18 pp 377– (1971) · Zbl 0232.20054
[20] Stallings [Stallings 82] J. R., Proc. Amer. Math. Soc. 84 pp 21– (1982)
[21] Venkataramana [Venkataramana 08] T. N., Israel J. Math. 166 pp 235– (2008) · Zbl 1221.57040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.