×

Holomorphic families of nonequivalent embeddings and of holomorphic group actions on affine space. (English) Zbl 1266.32029

The main result of the paper is the following. Let \(X\) be a \(k\)-dimensional complex space embeddable into \(\mathbb{C}^{n}\) and \( 0 < k < n-1\). The authors construct holomorphic families of proper holomorphic embeddings of \(X\) into \(\mathbb{C}^n\) parametrized by \(\mathbb{C}^{n-k-1},\) such that for any two distinct parameters \(w_1,w_2 \in \mathbb{C}^{n-k-1}\) the corresponding embeddings \(X \hookrightarrow \mathbb{C}^{n}\) are not equivalent.
The main idea of the proof is to start with the constant family of embeddings and use a parametric version of the standard way of producing nonstraightenable holomorphic embedding of \(\mathbb{C}^{k} \) into \(\mathbb{C}^{n}\) by using a sequence of holomorphic automorphisms. As in the nonparametric setting the embeddings contain certain countable unions of points on the spheres that are used to prove growth conditions on a holomorphic automorphism that maps one embedding from the family to another. At this point an interpolation result is needed and the core problem in proving it is to bring parametrized points into the standard position. The main tools that are used in the proof are the Andersén-Lempert theory and the Oka-Grauert-Gromov homotopy theory.

MSC:

32M05 Complex Lie groups, group actions on complex spaces
32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
32Q28 Stein manifolds
32Q40 Embedding theorems for complex manifolds
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid Link

References:

[1] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane , J. Reine Angew. Math. 276 (1975), 148-166. · Zbl 0332.14004
[2] E. Andersén, Volume-preserving automorphisms of \(\mathbb{C}^{n}\) , Complex Variables Theory Appl. 14 (1990), 223-235. · Zbl 0705.58008
[3] E. Andersén and L. Lempert, On the group of holomorphic automorphisms of \(\mathbb{C}^{n}\) , Invent. Math. 110 (1992), 371-388. · Zbl 0770.32015 · doi:10.1007/BF01231337
[4] T. Asanuma, Non-linearizable algebraic \(k^{\star}\)-actions on affine spaces , Invent. Math. 138 (1999), 281-306. · Zbl 0933.14027 · doi:10.1007/s002220050379
[5] S. Bochner and D. Montgomery, Locally compact groups of differentiable transformations , Ann. of Math. (2) 47 (1946), 639-653. · Zbl 0061.04407 · doi:10.2307/1969226
[6] S. Borell and F. Kutzschebauch, Non-equivalent embeddings into complex Euclidean spaces , Internat. J. Math. 17 (2006), 1033-1046. · Zbl 1122.32009 · doi:10.1142/S0129167X06003795
[7] G. Buzzard and J. E. Fornæss, An embedding of \(\mathbb{C} \) into \(\mathbb{C}^{2}\) with hyperbolic complement , Math. Ann. 306 (1996), 539-546. · Zbl 0864.32013 · doi:10.1007/BF01445264
[8] E. M. Chirka, Complex Analytic Sets , Math. Appl. (Soviet Ser.) 46 , Kluwer, Dordrecht, 1989. · Zbl 0683.32002
[9] H. Derksen and F. Kutzschebauch, Nonlinearizable holomorphic group actions , Math. Ann. 311 (1998), 41-53. · Zbl 0911.32042 · doi:10.1007/s002080050175
[10] H. Derksen and F. Kutzschebauch, Global holomorphic linearization of actions of compact Lie groups on \(\mathbb{C}^{n}\) , Contemp. Math. 222 (1999), 201-210. · Zbl 0933.32032 · doi:10.1090/conm/222/03162
[11] D. A. Eisenman, Intrinsic measures on complex manifolds and holomorphic mappings , Mem. Amer. Math. Soc. 96 (1970), 80 pp. · Zbl 0197.05901
[12] Y. Eliashberg and M. Gromov, Embeddings of Stein manifolds of dimension \(n\) into the affine space of dimension \(3n/2+1\) , Ann. of Math. (2) 136 (1992), 123-135. · Zbl 0758.32012 · doi:10.2307/2946547
[13] O. Forster, Plongements des variétés de Stein , Comm. Math. Helv. 45 (1970), 170-184. · Zbl 0184.31403 · doi:10.1007/BF02567324
[14] O. Forster and K. J. Ramspott, Analytische Modulgarben und Endromisbündel , Invent. Math. 2 (1966), 145-170. · Zbl 0154.33401 · doi:10.1007/BF01404550
[15] F. Forstnerič, Interpolation by holomorphic automorphisms and embeddings in \(\mathbb{C}^{n}\) , J. Geom. Anal. 9 (1999), 93-117. · Zbl 0963.32006 · doi:10.1007/BF02923090
[16] F. Forstnerič, The Oka principle for sections of stratified fiber bundles , Pure Appl. Math. Q. 6 (2010), 843-874. · Zbl 1216.32005 · doi:10.4310/PAMQ.2010.v6.n3.a11
[17] F. Forstnerič, J. Globevnik, and J.-P. Rosay, Nonstraightenable complex lines in \(\mathbb{C}^{2}\) , Ark. Mat. 34 (1996), 97-101. · Zbl 0853.58015 · doi:10.1007/BF02559509
[18] F. Forstnerič, B. Ivarsson, F. Kutzschebauch, and J. Prezelj, An interpolation theorem for proper holomorphic embeddings , Math. Ann. 338 (2007), 545-554. · Zbl 1177.32003 · doi:10.1007/s00208-007-0087-1
[19] F. Forstnerič and J. Prezelj, Oka’s principle for holomorphic submersions with sprays , Math. Ann. 322 (2002), 633-666. · Zbl 1011.32006 · doi:10.1007/s002080100249
[20] F. Forstnerič and J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of \(\mathbb{C}^{n}\) , Invent. Math. 112 (1993), 323-349. · Zbl 0792.32011 · doi:10.1007/BF01232438
[21] G. Freudenburg and L. Moser-Jauslin, Embeddings of Danielewski surfaces , Math. Z. 245 (2003), 823-834. · Zbl 1074.14054 · doi:10.1007/s00209-003-0572-5
[22] J. Globevnik, Interpolation by proper holomorphic embeddings of the disc into \(\mathbb{C}^{2}\) , Math. Res. Lett. 9 (2002), 567-577. · Zbl 1026.32030 · doi:10.4310/MRL.2002.v9.n4.a16
[23] I. Graham and H. Wu, Some remarks on the intrinsic measures of Eisenman , Trans. Amer. Math. Soc. 288 (1985), no. 2, 625-660. · Zbl 0582.32034 · doi:10.2307/1999956
[24] H. Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen , Math. Ann. 133 (1957), 139-159. · Zbl 0080.29201 · doi:10.1007/BF01343296
[25] H. Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen , Math. Ann. 133 (1957), 450-472. · Zbl 0080.29202 · doi:10.1007/BF01343758
[26] H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen , Math. Ann. 135 (1958), 263-273. · Zbl 0081.07401 · doi:10.1007/BF01351803
[27] M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles , J. Amer. Math. Soc. 2 (1989), 851-897. · Zbl 0686.32012 · doi:10.2307/1990897
[28] P. Heinzner and F. Kutzschebauch, An equivariant version of Grauert’s Oka principle , Invent. Math. 119 (1995), 317-346. · Zbl 0837.32004 · doi:10.1007/BF01245185
[29] A. T. Huckleberry, “Actions of groups of holomorphic transformations” in Several Complex Variables, VI , Encyclopaedia Math. Sci. 69 , Springer, Berlin, 1990, 143-196. · Zbl 0744.32018
[30] B. Ivarsson and F. Kutzschebauch, A solution of Gromov’s Vaserstein problem , C. R. Acad. Sci. Paris 346 (2008), 1239-1243. · Zbl 1160.32017 · doi:10.1016/j.crma.2008.10.017
[31] B. Ivarsson and F. Kutzschebauch, Holomorphic factorization of maps into \(SL_{n}(\mathbb{C})\) , Ann. Math. 175 (2012), 45-69. · Zbl 1243.32007 · doi:10.4007/annals.2012.175.1.3
[32] S. Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of \(k^{n}\) to automorphisms of \(k^{n}\) , Proc. Amer. Math. Soc. 113 (1991), 325-334. · Zbl 0743.14011 · doi:10.2307/2048516
[33] S. Kaliman, Isotopic embeddings of affine algebraic varieties into \(\mathbb{C}^{n}\) , Contemp. Math. 137 (1992), 291-295. · Zbl 0768.14005
[34] S. Kaliman, Exotic analytic structures and Eisenman intrinsic measures , Israel J. Math. 88 (1994), 411-423. · Zbl 0821.14025 · doi:10.1007/BF02937521
[35] S. Kaliman and F. Kutzschebauch, Criteria for the density property of complex manifolds , Invent. Math. 172 (2008), 71-87. · Zbl 1143.32014 · doi:10.1007/s00222-007-0094-6
[36] F. Kutzschebauch, Compact and reductive subgroups of the group of holomorphic automorphisms of \(\mathbb{C}^{n}\) , Sūrikaisekikenkyūsho Kōkyūroku 1033 (1998), 81-93. · Zbl 0940.32012
[37] F. Kutzschebauch, Andersén-Lempert-theory with parameters: A representation theoretic point of view , J. Algebra Appl. 4 (2005), 325-340. · Zbl 1077.32010 · doi:10.1142/S0219498805001216
[38] F. Kutzschebauch, Some results on embedding Stein spaces with interpolation , Ark. Mat. 43 (2005), 419-425. · Zbl 1090.32014 · doi:10.1007/BF02384789
[39] J. Prezelj, Interpolation of embeddings of Stein manifolds on discrete sets , Math. Ann. 326 (2003), 275-296. · Zbl 1037.32024 · doi:10.1007/s00208-003-0401-5
[40] R. Remmert, Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convex , C. R. Acad. Sci. Paris 243 (1956), 118-121. · Zbl 0070.30401
[41] J.-P. Rosay and W. Rudin, Holomorphic maps from \(\mathbb{C}^{n}\) to \(\mathbb{C}^{n}\) , Trans. Amer. Math. Soc. 310 (1988), no. 1, 47-86. · Zbl 0708.58003 · doi:10.2307/2001110
[42] J.-P. Rosay and W. Rudin, “Holomorphic embeddings of \(\mathbb{C} \) in \(\mathbb{C}^{n}\)” in Several Complex Variables (Stockholm, 1987/1988) , Math. Notes 38 , Princeton Univ. Press, Princeton, 1993, 563-569. · Zbl 0779.32022
[43] J. Schürmann, Embeddings of Stein spaces into affine spaces of minimal dimension , Math. Ann. 307 (1997), 381-399. · Zbl 0881.32007 · doi:10.1007/s002080050040
[44] V. Srinivas, On the embedding dimension of an affine variety , Math. Ann. 289 (1991), 125-132. · Zbl 0725.14003 · doi:10.1007/BF01446563
[45] M. Suzuki, Propriétés topologiques des polynomes de deux variables complexes, et automorphismes algébriques de l’espace \(C^{2}\) , J. Math. Soc. Japan 26 (1974), 241-257. · Zbl 0276.14001 · doi:10.2969/jmsj/02620241
[46] M. Suzuki, Sur les opérationes holomorphes du group additif complexe sur l’espace de deux variables complexes , Ann. Sci. École Norm. Sup. (4) 10 (1977), 517-546. · Zbl 0403.32020
[47] D. Varolin, The density property for complex manifolds and geometric structures J. Geom. Anal. 11 (2001), 135-160. · Zbl 0994.32019 · doi:10.1007/BF02921959
[48] E. F. Wold, Fatou-Bieberbach domains , Internat. J. Math. 16 (2005), 1119-1130. · Zbl 1085.32008 · doi:10.1142/S0129167X05003235
[49] M. Zaĭdenberg, “An analytic cancellation theorem and exotic algebraic structures on \(C^{n}\), \(n\geq3\)” in Colloque d’Analyse Complexe et Géométrie (Marseille, 1992) , Astérisque 8 , Soc. Math. France, Montrouge, 1993, 251-282. · Zbl 0801.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.