×

Characteristic varieties of quasi-projective manifolds and orbifolds. (English) Zbl 1266.32035

Summary: The present paper considers the structure of the space of characters of quasi-projective manifolds. Such a space is stratified by the cohomology support loci of rank one local systems called characteristic varieties. The classical structure theorem of characteristic varieties is due to D. Arapura [J. Algebr. Geom. 6, No. 3, 563–597 (1997; Zbl 0923.14010)] and it exhibits the positive-dimensional irreducible components as pull-backs obtained from morphisms onto complex curves.
In this paper a different approach is provided, using morphisms onto orbicurves, which accounts also for zero-dimensional components and gives more precise information on the positive-dimensional characteristic varieties. In the course of proving this orbifold version of Arapura’s structure theorem, a gap in his proof is completed. As an illustration of the benefits of the orbifold approach, new obstructions for a group to be the fundamental group of a quasi-projective manifold are obtained.

MSC:

32S20 Global theory of complex singularities; cohomological properties
32S50 Topological aspects of complex singularities: Lefschetz theorems, topological classification, invariants
58K65 Topological invariants on manifolds
14B05 Singularities in algebraic geometry
14H30 Coverings of curves, fundamental group

Citations:

Zbl 0923.14010
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] D Arapura, Geometry of cohomology support loci for local systems, I, J. Algebraic Geom. 6 (1997) 563 · Zbl 0923.14010
[2] E Artal Bartolo, J Carmona Ruber, J I Cogolludo-Agustín, Essential coordinate components of characteristic varieties, Math. Proc. Cambridge Philos. Soc. 136 (2004) 287 · Zbl 1061.14022
[3] E Artal Bartolo, J I Cogolludo-Agustín, On the connection between fundamental groups and pencils with multiple fibers, J. Singul. 2 (2010) 1 · Zbl 1292.14020
[4] E Artal Bartolo, J I Cogolludo-Agustín, A Libgober, Depth of cohomology support loci for quasi-projective varieties via orbifold pencils · Zbl 1327.14140
[5] E Artal Bartolo, J I Cogolludo-Agustín, D Matei, Quasi-projectivity, Artin-Tits groups, and pencil maps (editors J I Cogolludo-Agustín, E Hironaka), Contemp. Math. 538, Amer. Math. Soc. (2011) 113 · Zbl 1221.14022
[6] G Barthel, F Hirzebruch, T Höfer, Geradenkonfigurationen und Algebraische Flächen, Aspects of Mathematics 4, Friedr. Vieweg & Sohn (1987) · Zbl 0645.14016
[7] I Bauer, Irrational pencils on non-compact algebraic manifolds, Internat. J. Math. 8 (1997) 441 · Zbl 0896.14008
[8] A Beauville, Annulation du \(H^1\) pour les fibrés en droites plats (editors K Hulek, T Peternell, M Schneider, F O Schreyer), Lecture Notes in Math. 1507, Springer (1992) 1 · Zbl 0792.14006
[9] R Bieri, W D Neumann, R Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987) 451 · Zbl 0642.57002
[10] F Bruhat, J Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. (1972) 5 · Zbl 0254.14017
[11] N Budur, Unitary local systems, multiplier ideals, and polynomial periodicity of Hodge numbers, Adv. Math. 221 (2009) 217 · Zbl 1187.14024
[12] F Campana, Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler, J. Algebraic Geom. 10 (2001) 599 · Zbl 1072.14512
[13] F Campana, Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu 10 (2011) 809 · Zbl 1236.14039
[14] F Campana, Quotients résolubles ou nilpotents des groupes de Kähler orbifoldes, Manuscripta Math. 135 (2011) 117 · Zbl 1217.32010
[15] F Campana, Special orbifolds and birational classification: a survey (editors C Faber, G van der Geer, E Looijenga), EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2011) 123 · Zbl 1229.14011
[16] F Catanese, Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104 (1991) 263 · Zbl 0743.32025
[17] F Catanese, J Keum, K Oguiso, Some remarks on the universal cover of an open \(K3\) surface, Math. Ann. 325 (2003) 279 · Zbl 1073.14535
[18] J I Cogolludo-Agustín, Topological invariants of the complement to arrangements of rational plane curves, Mem. Amer. Math. Soc. 159 (2002) · Zbl 1038.32025
[19] J I Cogolludo-Agustín, A Libgober, Mordell-Weil groups of elliptic threefolds and the Alexander module of plane curves, to appear in Crelle’s Journal · Zbl 1326.14090
[20] D C Cohen, Triples of arrangements and local systems, Proc. Amer. Math. Soc. 130 (2002) 3025 · Zbl 1002.32019
[21] D C Cohen, G Denham, A I Suciu, Torsion in Milnor fiber homology, Algebr. Geom. Topol. 3 (2003) 511 · Zbl 1030.32022
[22] K Corlette, C Simpson, On the classification of rank-two representations of quasiprojective fundamental groups, Compos. Math. 144 (2008) 1271 · Zbl 1155.58006
[23] P Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics 163, Springer (1970) · Zbl 0244.14004
[24] T Delzant, Trees, valuations and the Green-Lazarsfeld set, Geom. Funct. Anal. 18 (2008) 1236 · Zbl 1229.20022
[25] A Dimca, Characteristic varieties and constructible sheaves, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 18 (2007) 365 · Zbl 1139.14009
[26] A Dimca, On the irreducible components of characteristic varieties, An. \cStiin\ct. Univ. “Ovidius” Constan\cta Ser. Mat. 15 (2007) 67 · Zbl 1164.14005
[27] A Dimca, On admissible rank one local systems, J. Algebra 321 (2009) 3145 · Zbl 1186.14018
[28] A Dimca, L Maxim, Multivariable Alexander invariants of hypersurface complements, Trans. Amer. Math. Soc. 359 (2007) 3505 · Zbl 1119.32012
[29] A Dimca, \cS Papadima, A I Suciu, Alexander polynomials: essential variables and multiplicities, Int. Math. Res. Not. 2008 (2008) 36 · Zbl 1156.32018
[30] A Dimca, \cS Papadima, A I Suciu, Topology and geometry of cohomology jump loci, Duke Math. J. 148 (2009) 405 · Zbl 1222.14035
[31] R H Fox, Free differential calculus, V: the Alexander matrices re-examined, Ann. of Math. 71 (1960) 408 · Zbl 0142.22305
[32] M Green, R Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987) 389 · Zbl 0659.14007
[33] H A Hamm, Lefschetz theorems for singular varieties (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 547 · Zbl 0525.14011
[34] E Hironaka, Alexander stratifications of character varieties, Ann. Inst. Fourier (Grenoble) 47 (1997) 555 · Zbl 0870.57003
[35] G Levitt, \(\mathbfR\)-trees and the Bieri-Neumann-Strebel invariant, Publ. Mat. 38 (1994) 195 · Zbl 0829.20038
[36] A Libgober, Characteristic varieties of algebraic curves (editors C Ciliberto, F Hirzebruch, R Miranda, M Teicher), NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer Acad. Publ. (2001) 215 · Zbl 1045.14016
[37] A Libgober, Non vanishing loci of Hodge numbers of local systems, Manuscripta Math. 128 (2009) 1 · Zbl 1160.14004
[38] M V Nori, Zariski’s conjecture and related problems, Ann. Sci. École Norm. Sup. 16 (1983) 305 · Zbl 0527.14016
[39] F Serrano, Multiple fibres of a morphism, Comment. Math. Helv. 65 (1990) 287 · Zbl 0714.14008
[40] C Simpson, Lefschetz theorems for the integral leaves of a holomorphic one-form, Compositio Math. 87 (1993) 99 · Zbl 0802.58004
[41] C Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. 26 (1993) 361 · Zbl 0798.14005
[42] Y T Siu, Strong rigidity for Kähler manifolds and the construction of bounded holomorphic functions (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 124 · Zbl 0647.53052
[43] K Timmerscheidt, Mixed Hodge theory for unitary local systems, J. Reine Angew. Math. 379 (1987) 152 · Zbl 0611.14005
[44] O Zariski, The topological discriminant group of a Riemann surface of genus \(p\), Amer. J. Math. 59 (1937) 335 · Zbl 0016.32502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.