zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Further results on the traveling wave solutions for an integrable equation. (English) Zbl 1266.37032
Summary: The objective of this paper is to extend some results of pioneers for the nonlinear equation $m_t = (1/2)(1/m^k)_{xxx} - (1/2)(1/m^k)_x$ introduced by Qiao. The equivalent relationship of the traveling wave solutions between the integrable equation and the generalized KdV equation is revealed. Moreover, when $k = -(p/q)$, $p \neq q$ and $p, q \in \Bbb Z^+$, we obtain some explicit traveling wave solutions by the bifurcation method of dynamical systems.
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
35C07Traveling wave solutions of PDE
Full Text: DOI
[1] Z. J. Qiao, “New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solitons,” Journal of Mathematical Physics, vol. 48, no. 8, pp. 082701-082720, 2007. · Zbl 1152.81587 · doi:10.1063/1.2759830
[2] Z. J. Qiao and L. P. Liu, “A new integrable equation with no smooth solitons,” Chaos, Solitons and Fractals, vol. 41, no. 2, pp. 587-593, 2009. · Zbl 1198.35209 · doi:10.1016/j.chaos.2007.11.034
[3] S. Sakovich, “Smooth soliton solutions of a new integrable equation by Qiao,” Journal of Mathematical Physics, vol. 52, no. 2, p. 023509, 2011. · Zbl 1314.35151 · doi:10.1063/1.3548837
[4] P. G. Estévez, “Generalized Qiao hierarchy in 2+1 dimensions: reciprocal transformations, spectral problem and non-isospectrality,” Physics Letters A, vol. 375, no. 3, pp. 537-540, 2011. · Zbl 1241.37014 · doi:10.1016/j.physleta.2010.12.021
[5] Y.-Q. Yang and Y. Chen, “Prolongation structure of the equation studied by Qiao,” Communications in Theoretical Physics, vol. 56, no. 3, pp. 463-466, 2011. · Zbl 1247.37069 · doi:10.1088/0253-6102/56/3/13
[6] Z. Qiao, “A new integrable equation with cuspons and W/M-shape-peaks solitons,” Journal of Mathematical Physics, vol. 47, no. 11, pp. 112701-112709, 2006. · Zbl 1112.37063 · doi:10.1063/1.2365758
[7] J. Li and Z. Qiao, “Bifurcations of traveling wave solutions for an integrable equation,” Journal of Mathematical Physics, vol. 51, no. 4, pp. 042703-042723, 2010. · Zbl 1310.37034 · doi:10.1063/1.3385777
[8] J. B. Li and H. H. Dai, On the Study of Singular Nonlinear Traveling Wave Equations: Dynamical System Approach, Science Press, Beijing, China, 2007.
[9] J. B. Li and G. Chen, “On a class of singular nonlinear traveling wave equations,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 17, no. 11, pp. 4049-4065, 2007. · Zbl 1158.35080 · doi:10.1142/S0218127407019858
[10] J. Li, J. Wu, and H. Zhu, “Traveling waves for an integrable higher order KdV type wave equations,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 16, no. 8, pp. 2235-2260, 2006. · Zbl 1192.37100 · doi:10.1142/S0218127406016033
[11] M. S. Alber, R. Camassa, Y. N. Fedorov, D. D. Holm, and J. E. Marsden, “The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE’s of shallow water and Dym type,” Communications in Mathematical Physics, vol. 221, no. 1, pp. 197-227, 2001. · Zbl 1001.37062 · doi:10.1007/PL00005573
[12] Z. J. Qiao, “The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold,” Communications in Mathematical Physics, vol. 239, no. 1-2, pp. 309-341, 2003. · Zbl 1020.37046 · doi:10.1007/s00220-003-0880-y
[13] M. Kruskal, “Nonlinear wave equations dynamical systems, theory and applications,” Lecture Notes in Physics, vol. 38, pp. 310-354, 1975. · Zbl 0322.35056
[14] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, vol. 4, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 1981. · Zbl 0472.35002
[15] R. M. Miura, “The Korteweg-de Vries equation: a survey of results,” SIAM Review, vol. 18, no. 3, pp. 412-459, 1976. · Zbl 0333.35021 · doi:10.1137/1018076
[16] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London, UK, 1982.
[17] J. L. Bona, V. A. Dougalis, O. A. Karakashian, and W. R. McKinney, “Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation,” Philosophical Transactions of the Royal Society of London A, vol. 351, no. 1695, pp. 107-164, 1995. · Zbl 0824.65095 · doi:10.1098/rsta.1995.0027
[18] B. Fornberg and G. B. Whitham, “A numerical and theoretical study of certain nonlinear wave phenomena,” Philosophical Transactions of the Royal Society of London A, vol. 289, no. 1361, pp. 373-404, 1978. · Zbl 0384.65049 · doi:10.1098/rsta.1978.0064
[19] B. Dey, “Domain wall solutions of KdV-like equations with higher order nonlinearity,” Journal of Physics A, vol. 19, no. 1, pp. L9-L12, 1986. · Zbl 0624.35070 · doi:10.1088/0305-4470/19/9/044
[20] B. Dey, “KdV like equations with domain wall solutions and their Hamiltonians,” in Solitons, Nonlinear Dynam., pp. 188-194, Springer, Berlin, germany, 1988. · Zbl 0694.35191
[21] Z. Liu and C. Yang, “The application of bifurcation method to a higher-order KdV equation,” Journal of Mathematical Analysis and Applications, vol. 275, no. 1, pp. 1-12, 2002. · Zbl 1012.35076 · doi:10.1016/S0022-247X(02)00210-X
[22] M. Tang, R. Wang, and Z. Jing, “Solitary waves and their bifurcations of KdV like equation with higher order nonlinearity,” Science in China A, vol. 45, no. 10, pp. 1255-1267, 2002. · Zbl 1099.37057
[23] Z. Liu and T. Qian, “Peakons and their bifurcation in a generalized Camassa-Holm equation,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 11, no. 3, pp. 781-792, 2001. · Zbl 1090.37554 · doi:10.1142/S0218127401002420
[24] Z. Liu, A. M. Kayed, and C. Chen, “Periodic waves and their limits for the Camassa-Holm equation,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 16, no. 8, pp. 2261-2274, 2006. · Zbl 1192.35152 · doi:10.1142/S0218127406016045
[25] Z. R. Liu and Y. Long, “Compacton-like wave and kink-like wave of GCH equation,” Nonlinear Analysis. Real World Applications, vol. 8, no. 1, pp. 136-155, 2007. · Zbl 1106.35065 · doi:10.1016/j.nonrwa.2005.06.005
[26] Z. Liu and Z. Ouyang, “A note on solitary waves for modified forms of Camassa-Holm and Degasperis-Procesi equations,” Physics Letters A, vol. 366, no. 4-5, pp. 377-381, 2007. · Zbl 1203.35234 · doi:10.1016/j.physleta.2007.01.074
[27] M. Song and Z. Liu, “Periodic wave solutions and their limits for the generalized KP-BBM equation,” Journal of Applied Mathematics, vol. 2012, Article ID 363879, 25 pages, 2012. · Zbl 1255.35183 · doi:10.1155/2012/363879
[28] Z. R. Liu, T. Jiang, P. Qin, and Q. Xu, “Trigonometric function periodic wave solutions and their limit forms for the KdV-like and the PC-like equations,” Mathematical Problems in Engineering, vol. 2011, Article ID 810217, 23 pages, 2011. · Zbl 1235.35259 · doi:10.1155/2011/810217