Eguchi, Tohru; Ooguri, Hirosi; Tachikawa, Yuji Notes on the \(K3\) surface and the Mathieu group \(M_{24}\). (English) Zbl 1266.58008 Exp. Math. 20, No. 1, 91-96 (2011). Summary: We point out that the elliptic genus of the \(K3\) surface has a natural decomposition in terms of dimensions of irreducible representations of the largest Mathieu group \(M_{24}\). The reason remains a mystery. Cited in 12 ReviewsCited in 136 Documents MSC: 58J26 Elliptic genera 11F23 Relations with algebraic geometry and topology 14J28 \(K3\) surfaces and Enriques surfaces 20D08 Simple groups: sporadic groups Keywords:\(K3\) surface; elliptic genus; Mathieu groups × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid Online Encyclopedia of Integer Sequences: 1A coefficients in an expansion of the elliptic genus of the K3 surface. References: [1] DOI: 10.1007/s00222-005-0493-5 · Zbl 1135.11057 · doi:10.1007/s00222-005-0493-5 [2] Bringmann [Bringmann and Ono 08] K., Preprint (2008) [3] DOI: 10.1112/blms/11.3.308 · Zbl 0424.20010 · doi:10.1112/blms/11.3.308 [4] Conway [Conway et al. 85] J., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. (1985) · Zbl 0568.20001 [5] DOI: 10.1007/BF02108807 · Zbl 0835.20027 · doi:10.1007/BF02108807 [6] Eguchi [Eguchi and Hikami 09] T., Commun. Number Theor. and Phys. 3 pp 531– (2009) [7] DOI: 10.1007/JHEP02(2010)019 · Zbl 1270.83026 · doi:10.1007/JHEP02(2010)019 [8] DOI: 10.1016/0370-2693(87)91679-0 · doi:10.1016/0370-2693(87)91679-0 [9] DOI: 10.1016/0370-2693(88)90778-2 · doi:10.1016/0370-2693(88)90778-2 [10] DOI: 10.1016/0550-3213(89)90454-9 · doi:10.1016/0550-3213(89)90454-9 [11] Frenkel [Frenkel et al. 88] I. B., Vertex Operator Algebras and the Monster, Pure and Applied Math. 134 (1988) · Zbl 0674.17001 [12] Kac [Kac 98] V. G., Vertex Algebras for Beginners, 2nd ed. (1998) · Zbl 0924.17023 [13] DOI: 10.1016/j.aim.2003.12.005 · Zbl 1049.17025 · doi:10.1016/j.aim.2003.12.005 [14] DOI: 10.1215/S0012-7094-98-09217-1 · Zbl 0958.14025 · doi:10.1215/S0012-7094-98-09217-1 [15] DOI: 10.1007/BF01394352 · Zbl 0705.14045 · doi:10.1007/BF01394352 [16] DOI: 10.1142/S0217751X89001801 · doi:10.1142/S0217751X89001801 [17] DOI: 10.1112/blms/11.3.352 · Zbl 0425.20016 · doi:10.1112/blms/11.3.352 [18] DOI: 10.1007/BF01208956 · Zbl 0625.57008 · doi:10.1007/BF01208956 [19] Iwanami Suugaku Jiten, 4th Japanese ed. (2007) [20] Zagier, [Zagier 07] D. 2006–2007. ”Ramanujan’s Mock Theta Functions and Their Applications.”. Séminaire Bourbaki 60éme année. no. 986. [21] Zwegers [Zwegers 02] S. P., Ph.D. thesis (2002) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.