×

The linear stochastic order and directed inference for multivariate ordered distributions. (English) Zbl 1266.60029

Summary: Researchers are often interested in drawing inferences regarding the order between two experimental groups on the basis of multivariate response data. Since standard multivariate methods are designed for two-sided alternatives, they may not be ideal for testing for order between two groups. In this article we introduce the notion of the linear stochastic order and investigate its properties. Statistical theory and methodology are developed to both estimate the direction which best separates two arbitrary ordered distributions and to test for order between the two groups. The new methodology generalizes Roy’s classical largest root test to the nonparametric setting and is applicable to random vectors with discrete and/or continuous components. The proposed methodology is illustrated using data obtained from a 90-day pre-chronic rodent cancer bioassay study conducted by the National Toxicology Program (NTP).

MSC:

60E15 Inequalities; stochastic orderings
62E20 Asymptotic distribution theory in statistics
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
62H99 Multivariate analysis
62P15 Applications of statistics to psychology

References:

[1] Abrevaya, J. and Huang, J. (2005). On the bootstrap of the maximum score estimator. Econometrica 73 1175-1204. · Zbl 1152.62337 · doi:10.1111/j.1468-0262.2005.00613.x
[2] Arcones, M. A., Kvam, P. H. and Samaniego, F. J. (2002). Nonparametric estimation of a distribution subject to a stochastic precedence constraint. J. Amer. Statist. Assoc. 97 170-182. · Zbl 1073.62520 · doi:10.1198/016214502753479310
[3] Audet, C., Béchard, V. and Le Digabel, S. (2008). Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J. Global Optim. 41 299-318. · Zbl 1157.90535 · doi:10.1007/s10898-007-9234-1
[4] Bekele, B. N. and Thall, P. F. (2004). Dose-finding based on multiple toxicities in a soft tissue sarcoma trial. J. Amer. Statist. Assoc. 99 26-35. · Zbl 1089.62523 · doi:10.1198/016214504000000043
[5] Bickel, P. J. and Sakov, A. (2008). On the choice of \(m\) in the \(m\) out of \(n\) bootstrap and confidence bounds for extrema. Statist. Sinica 18 967-985. · Zbl 1534.62057
[6] DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability . Springer, New York. · Zbl 1154.62001
[7] Davey, B. A. and Priestley, H. A. (2002). Introduction to Lattices and Order , 2nd ed. Cambridge Univ. Press, New York. · Zbl 1002.06001
[8] Davidov, O. (2012). Ordered inference, rank statistics and combining \(p\)-values: A new perspective. Stat. Methodol. 9 456-465. · Zbl 1365.62151 · doi:10.1016/j.stamet.2011.10.003
[9] Davidov, O. and Herman, A. (2011). Multivariate stochastic orders induced by case-control sampling. Methodol. Comput. Appl. Probab. 13 139-154. · Zbl 1208.60017 · doi:10.1007/s11009-009-9136-4
[10] Davidov, O. and Herman, A. (2012). Ordinal dominance curve based inference for stochastically ordered distributions. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 825-847. · doi:10.1111/j.1467-9868.2012.01031.x
[11] Davidov, O. and Peddada, S. (2011). Order-restricted inference for multivariate binary data with application to toxicology. J. Amer. Statist. Assoc. 106 1394-1404. · Zbl 1233.62122 · doi:10.1198/jasa.2011.tm10322
[12] Delagdo, M., Rodriguez-Poo, J. M. and Wolf, M. (2001). Subsampling inference in cube root asymptotics with an application to Manski’s maximum score estimator. Econom. Lett. 73 241-250. · Zbl 1056.91546 · doi:10.1016/S0165-1765(01)00494-3
[13] Ding, Y. and Zhang, X. (2004). Some stochastic orders of Kotz-type distributions. Statist. Probab. Lett. 69 389-396. · Zbl 1066.60022 · doi:10.1016/j.spl.2004.06.001
[14] Fang, K. T., Kots, S. and Ng, K. W. (1989). Symmetric Multivariate and Related Distributions . Chapman & Hall, London. · Zbl 0699.62048
[15] Fisher, N. I. and Hall, P. (1989). Bootstrap confidence regions for directional data. J. Amer. Statist. Assoc. 84 996-1002. · doi:10.1080/01621459.1989.10478864
[16] Hájek, J., Šidák, Z. and Sen, P. K. (1999). Theory of Rank Tests , 2nd ed. Academic Press, San Diego, CA.
[17] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30. · Zbl 0127.10602 · doi:10.2307/2282952
[18] Hu, J., Homem-de-Mello, T. and Mehrotra, S. (2011). Concepts and applications of stochastically weighted stochastic dominance. Unpublished manuscript. Available at . · Zbl 1305.90316
[19] Ivanova, A. and Murphy, M. (2009). An adaptive first in man dose-escalation study of NGX267: Statistical, clinical, and operational considerations. J. Biopharm. Statist. 19 247-255. · doi:10.1080/10543400802609805
[20] Joe, H. (1997). Multivariate Models and Dependence Concepts . Chapman & Hall, London. · Zbl 0990.62517
[21] Johnson, R. and Wichern, D. (1998). Applied Multivariate Statistical Analysis . Prentice Hall, New York. · Zbl 0499.62002
[22] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191-219. · Zbl 0703.62063 · doi:10.1214/aos/1176347498
[23] Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference . Springer, New York. · Zbl 1180.62137
[24] Lee, S. M. S. (1999). On a class of \(m\) out of \(n\) bootstrap confidence intervals. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 901-911. · Zbl 0940.62041 · doi:10.1111/1467-9868.00209
[25] Lucas, L. A. and Wright, F. T. (1991). Testing for and against a stochastic ordering between multivariate multinomial populations. J. Multivariate Anal. 38 167-186. · Zbl 0727.62060 · doi:10.1016/0047-259X(91)90038-4
[26] Moser, V. (2000). Observational batteries in neurotoxicity testing. International Journal of Toxicology 19 407-411.
[27] Neumeyer, N. (2004). A central limit theorem for two-sample \(U\)-processes. Statist. Probab. Lett. 67 73-85. · Zbl 1079.60026 · doi:10.1016/j.spl.2002.12.001
[28] NTP (2003). NTP toxicology and carcinogenesiss studies of citral (microencapsulated) (CAS No. 5392-40-5) in F344/N rats and B6C3F1 mice (feed studies).
[29] Peddada, S. D. (1985). A short note on Pitman’s measure of nearness. Amer. Statist. 39 298-299.
[30] Peddada, S. D. and Chang, T. (1996). Bootstrap confidence region estimation of the motion of rigid bodies. J. Amer. Statist. Assoc. 91 231-241. · Zbl 0871.62049 · doi:10.2307/2291400
[31] Pitman, E. J. G. (1937). The closest estimates of statistical parameters. Proceedings of the Cambridge Philosophical Society 33 212-222. · Zbl 0016.36404
[32] Price, C. J., Reale, M. and Robertson, B. L. (2008). A direct search method for smooth and non-smooth unconstrained optimization problems. ANZIAM J. 48 927-948. · Zbl 1334.90132
[33] Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis. Ann. Math. Statist. 24 220-238. · Zbl 0051.36701 · doi:10.1214/aoms/1177729029
[34] Sampson, A. R. and Whitaker, L. R. (1989). Estimation of multivariate distributions under stochastic ordering. J. Amer. Statist. Assoc. 84 541-548. · Zbl 0682.62036 · doi:10.2307/2289940
[35] Sen, B., Banerjee, M. and Woodroofe, M. (2010). Inconsistency of bootstrap: The Grenander estimator. Ann. Statist. 38 1953-1977. · Zbl 1202.62057 · doi:10.1214/09-AOS777
[36] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics . Wiley, New York. · Zbl 0538.62002
[37] Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders . Springer, New York. · Zbl 0806.62009
[38] Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator. Econometrica 61 123-137. · Zbl 0773.62011 · doi:10.2307/2951780
[39] van der Vaart, A. W. (2000). Asymptotic Statistics . Cambridge Univ. Press, Cambridge. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.