Zhang, Xingqiu Computation of positive solutions for nonlinear impulsive integral boundary value problems with \(p\)-Laplacian on infinite intervals. (English) Zbl 1266.65135 Abstr. Appl. Anal. 2013, Article ID 708281, 13 p. (2013). Summary: This paper deals with the existence and iteration of positive solutions for nonlinear second-order impulsive integral boundary value problems with \(p\)-Laplacian on infinite intervals. Our approach is based on the monotone iterative technique. Cited in 1 Document MSC: 65L10 Numerical solution of boundary value problems involving ordinary differential equations 34B15 Nonlinear boundary value problems for ordinary differential equations 34A37 Ordinary differential equations with impulses Keywords:positive solutions; nonlinear second-order impulsive integral boundary value problems; \(p\)-Laplacian; infinite intervals; monotone iterative technique × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Lakshmikantham, V.; Baĭnov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations. Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6, xii+273 (1989), Teaneck, NJ, USA: World Scientific Publishing, Teaneck, NJ, USA · Zbl 0719.34002 [2] Baĭnov, D. D.; Simeonov, P. S., Systems with Impulse Effect: Stability, Theory and Application. Systems with Impulse Effect: Stability, Theory and Application, Ellis Horwood Series: Mathematics and its Applications, 255 (1989), Chichester, UK: Ellis Horwood, Chichester, UK · Zbl 0683.34032 [3] Samoĭlenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations. Impulsive Differential Equations, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 14, x+462 (1995), River Edge, NJ, USA: World Scientific Publishing, River Edge, NJ, USA · Zbl 0837.34003 · doi:10.1142/9789812798664 [4] Agarwal, R. P.; O’Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations, x+341 (2001), Dordrecht, The Netherland: Kluwer Academic Publishers, Dordrecht, The Netherland · Zbl 0988.34002 · doi:10.1007/978-94-010-0718-4 [5] Chen, S. Z.; Zhang, Y., Singular boundary value problems on a half-line, Journal of Mathematical Analysis and Applications, 195, 2, 449-468 (1995) · Zbl 0852.34019 · doi:10.1006/jmaa.1995.1367 [6] Liu, X., Solutions of impulsive boundary value problems on the half-line, Journal of Mathematical Analysis and Applications, 222, 2, 411-430 (1998) · Zbl 0912.34021 · doi:10.1006/jmaa.1997.5908 [7] Zima, M., On positive solutions of boundary value problems on the half-line, Journal of Mathematical Analysis and Applications, 259, 1, 127-136 (2001) · Zbl 1003.34024 · doi:10.1006/jmaa.2000.7399 [8] Li, J.; Nieto, J. J., Existence of positive solutions for multipoint boundary value problem on the half-line with impulses, Boundary Value Problems, 2009 (2009) · Zbl 1177.34041 [9] Karakostas, G. L.; Tsamatos, P. Ch., Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electronic Journal of Differential Equations, 30, 1-17 (2002) · Zbl 0998.45004 [10] Karakostas, G. L.; Tsamatos, P. Ch., Existence of multiple positive solutions for a nonlocal boundary value problem, Topological Methods in Nonlinear Analysis, 19, 1, 109-121 (2002) · Zbl 1071.34023 [11] Webb, J. R. L.; Infante, G., Positive solutions of nonlocal boundary value problems: a unified approach, Journal of the London Mathematical Society, 74, 3, 673-693 (2006) · Zbl 1115.34028 · doi:10.1112/S0024610706023179 [12] Webb, J. R. L.; Infante, G., Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differential Equations and Applications, 15, 1-2, 45-67 (2008) · Zbl 1148.34021 · doi:10.1007/s00030-007-4067-7 [13] Yang, Z., Existence and nonexistence results for positive solutions of an integral boundary value problem, Nonlinear Analysis. Theory, Methods & Applications A, 65, 8, 1489-1511 (2006) · Zbl 1104.34017 · doi:10.1016/j.na.2005.10.025 [14] Yang, Z., Positive solutions of a second-order integral boundary value problem, Journal of Mathematical Analysis and Applications, 321, 2, 751-765 (2006) · Zbl 1106.34014 · doi:10.1016/j.jmaa.2005.09.002 [15] Feng, M., Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions, Applied Mathematics Letters, 24, 8, 1419-1427 (2011) · Zbl 1221.34062 · doi:10.1016/j.aml.2011.03.023 [16] Feng, M.; Zhang, X.; Ge, W., New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Boundary Value Problems, 2011 (2011) · Zbl 1214.34005 · doi:10.1155/2011/720702 [17] Ahmad, B.; Alsaedi, A.; Alghamdi, B. S., Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Analysis. Real World Applications, 9, 4, 1727-1740 (2008) · Zbl 1154.34311 · doi:10.1016/j.nonrwa.2007.05.005 [18] Feng, M.; Liu, X.; Feng, H., The existence of positive solution to a nonlinear fractional differential equation with integral boundary conditions, Advances in Difference Equations, 2011 (2011) · Zbl 1219.34009 [19] Kang, P.; Wei, Z.; Xu, J., Positive solutions to fourth-order singular boundary value problems with integral boundary conditions in abstract spaces, Applied Mathematics and Computation, 206, 1, 245-256 (2008) · Zbl 1169.34043 · doi:10.1016/j.amc.2008.09.010 [20] Zhang, X.; Ge, W., Symmetric positive solutions of boundary value problems with integral boundary conditions, Applied Mathematics and Computation, 219, 8, 3553-3564 (2012) · Zbl 1311.34054 · doi:10.1016/j.amc.2012.09.037 [21] Zhang, X.; Yang, X.; Feng, M., Minimal nonnegative solution of nonlinear impulsive differential equations on infinite interval, Boundary Value Problems, 2011 (2011) · Zbl 1209.34036 [22] Guo, D., Existence of positive solutions for \(n\) th-order nonlinear impulsive singular integro-differential equations in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications A, 68, 9, 2727-2740 (2008) · Zbl 1140.45017 · doi:10.1016/j.na.2007.02.019 [23] Liu, Y., Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Applied Mathematics and Computation, 144, 2-3, 543-556 (2003) · Zbl 1036.34027 · doi:10.1016/S0096-3003(02)00431-9 [24] Liu, Y., Boundary value problems for second order differential equations on unbounded domains in a Banach space, Applied Mathematics and Computation, 135, 2-3, 569-583 (2003) · Zbl 1035.34015 · doi:10.1016/S0096-3003(02)00070-X [25] Yan, B.; O’Regan, D.; Agarwal, R. P., Unbounded solutions for singular boundary value problems on the semi-infinite interval: upper and lower solutions and multiplicity, Journal of Computational and Applied Mathematics, 197, 2, 365-386 (2006) · Zbl 1116.34016 · doi:10.1016/j.cam.2005.11.010 [26] Yan, B.; Liu, Y., Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line, Applied Mathematics and Computation, 147, 3, 629-644 (2004) · Zbl 1045.34009 · doi:10.1016/S0096-3003(02)00801-9 [27] Lian, H.; Pang, H.; Ge, W., Triple positive solutions for boundary value problems on infinite intervals, Nonlinear Analysis. Theory, Methods & Applications A, 67, 7, 2199-2207 (2007) · Zbl 1128.34011 · doi:10.1016/j.na.2006.09.016 [28] Liang, S.; Zhang, J., The existence of countably many positive solutions for some nonlinear three-point boundary problems on the half-line, Nonlinear Analysis. Theory, Methods & Applications A, 70, 9, 3127-3139 (2009) · Zbl 1166.34304 · doi:10.1016/j.na.2008.04.016 [29] Liu, L.; Liu, Z.; Wu, Y., Infinite boundary value problems for \(n\) th-order nonlinear impulsive integro-differential equations in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications A, 67, 9, 2670-2679 (2007) · Zbl 1124.45008 · doi:10.1016/j.na.2006.09.031 [30] Ma, D.-X.; Du, Z.-J.; Ge, W.-G., Existence and iteration of monotone positive solutions for multipoint boundary value problem with \(p\)-Laplacian operator, Computers & Mathematics with Applications, 50, 5-6, 729-739 (2005) · Zbl 1095.34009 · doi:10.1016/j.camwa.2005.04.016 [31] Sun, B.; Zhao, J.; Yang, P.; Ge, W., Successive iteration and positive solutions for a third-order multipoint generalized right-focal boundary value problem with \(p\)-Laplacian, Nonlinear Analysis. Theory, Methods & Applications A, 70, 1, 220-230 (2009) · Zbl 1161.34318 · doi:10.1016/j.na.2007.11.048 [32] Sun, B.; Yang, A.; Ge, W., Successive iteration and positive solutions for some second-order three-point \(p\)-Laplacian boundary value problems, Mathematical and Computer Modelling, 50, 3-4, 344-350 (2009) · Zbl 1185.34030 · doi:10.1016/j.mcm.2008.08.024 [33] Liu, Y. S., A boundary value problem for a second-order differential equation on an unbounded domain, Acta Analysis Functionalis Applicata, 4, 3, 211-216 (2002) · Zbl 1038.34030 [34] Corduneanu, C., Integral Equations and Stability of Feedback Systems, ix+238 (1973), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0273.45001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.