zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel method for solving KdV equation based on reproducing kernel Hilbert space method. (English) Zbl 1266.65178
Summary: We propose a reproducing kernel method for solving the Korteweg-de Vries (KdV) equation with initial condition based on the reproducing kernel theory. The exact solution is represented in the form of series in the reproducing kernel Hilbert space. Some numerical examples are also studied to demonstrate the accuracy of the present method. Results of numerical examples show that the presented method is effective.

MSC:
65M99Numerical methods for IVP of PDE
46E22Hilbert spaces with reproducing kernels
35Q53KdV-like (Korteweg-de Vries) equations
35C10Series solutions of PDE
WorldCat.org
Full Text: DOI
References:
[1] P. G. Drazin and R. S. Johnson, Solitons: An Introduction, Cambridge University Press, Cambridge, UK, 1989. · Zbl 0661.35001
[2] A. A. Soliman, “Collucation solution of the KdV equation using septic splines,” International Journal of Computer Mathematics, vol. 81, pp. 325--331, 2004. · Zbl 1058.65113 · doi:10.1080/00207160410001660817
[3] A. A. Soliman, A. H. A. Ali, and K. R. Raslan, “Numerical solution for the KdV equation based on similarity reductions,” Applied Mathematical Modelling, vol. 33, no. 2, pp. 1107-1115, 2009. · Zbl 1168.65376 · doi:10.1016/j.apm.2008.01.004
[4] N. J. Zabusky, “A synergetic approach to problem of nonlinear dispersive wave propagation and interaction,” in Proceeding of Symposium Nonlinear PDEs, W. Ames, Ed., pp. 223--258, Academic Press, New York, NY, USA, 1967. · Zbl 0183.18104
[5] D. J. Korteweg-de Vries and G. de Vries, “On the change in form of long waves advancing in rectangular canal and on a new type of long stationary waves,” Philosophical Magazine, vol. 39, pp. 422--443, 1895. · Zbl 26.0881.02
[6] C. Gardner and G. K. Marikawa, “The effect of temperature of the width of a small amplitude solitary wave in a collision free plasma,” Communications on Pure and Applied Mathematics, vol. 18, pp. 35--49, 1965.
[7] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, New York, NY, USA, 1982.
[8] K. Goda, “On stability of some finite difference schemes for the KdV equation,” Journal of the Physical Society of Japan, vol. 39, pp. 229-236, 1975.
[9] A. C. Vliengenthart, “On finite difference methods for KdV equation,” Journal of Engineering Mathematics, vol. 5, pp. 137--155, 1971.
[10] M. Inc, “Numerical simulation of KdV and mKdV equations with initial conditions by the variational iteration method,” Chaos, Solitons and Fractals, vol. 34, no. 4, pp. 1075-1081, 2007. · Zbl 1142.35572 · doi:10.1016/j.chaos.2006.04.069
[11] I. Da\ug and Y. Dereli, “Numerical solution of KdV equation using radial basis functions,” Applied Mathematical Modelling, vol. 32, pp. 535--546, 2008. · Zbl 1132.65096 · doi:10.1016/j.apm.2007.02.001
[12] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press, Springer, London, UK, 2009. · Zbl 1175.35001
[13] M. I. Syam, “Adomian decomposition method for approximating the solution of the KdV equation,” Applied Mathematics and Computation, vol. 162, pp. 1465--1473, 2005. · Zbl 1063.65112 · doi:10.1016/j.amc.2004.03.021
[14] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American Mathematical Society, vol. 68, pp. 337--404, 1950. · Zbl 0037.20701 · doi:10.2307/1990404
[15] M. Inc, A. Akgül, and A. Kilicman, “Explicit solution of telegraph equation based on reproducing Kernel method,” Journal of Function Spaces and Applications, vol. 2012, Article ID 984682, 23 pages, 2012. · Zbl 1259.35062 · doi:10.1155/2012/984682
[16] F. Geng and M. Cui, “Solving a nonlinear system of second order boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 327, pp. 1167--1181, 2007. · Zbl 1113.34009 · doi:10.1016/j.jmaa.2006.05.011
[17] H. Yao and M. Cui, “A new algorithm for a class of singular boundary value problems,” Applied Mathematics and Computation, vol. 186, pp. 1183--1191, 2007. · Zbl 1175.65085 · doi:10.1016/j.amc.2006.07.157
[18] W. Wang, M. Cui, and B. Han, “A new method for solving a class of singular two-point boundary value prolems,” Applied Mathematics and Computation, vol. 206, pp. 721--727, 2008. · Zbl 1161.65060 · doi:10.1016/j.amc.2008.09.019
[19] Y. Zhou, Y. Lin, and M. Cui, “An efficient computational method for second order boundary value problemsof nonlinear diffierential equations,” Applied Mathematics and Computation, vol. 194, pp. 357-365, 2007. · Zbl 1193.65134 · doi:10.1016/j.amc.2007.04.029
[20] X. Lü and M. Cui, “Analytic solutions to a class of nonlinear infinite-delay-differential equations,” Journal of Mathematical Analysis and Applications, vol. 343, pp. 724-732, 2008. · Zbl 1160.34059 · doi:10.1016/j.jmaa.2008.01.101
[21] Y. L. Wang and L. Chao, “Using reproducing kernel for solving a class of partial differential equation with variable-coefficients,” Applied Mathematics and Mechanics, vol. 29, pp. 129-137, 2008. · Zbl 1231.41019 · doi:10.1007/s10483-008-0115-y
[22] F. Li and M. Cui, “A best approximation for the solution of one-dimensional variable-coefficient Burger’s equation,” Numerical Methods for Partial Differential Equations, vol. 25, pp. 1353-1365, 2009. · Zbl 05632408
[23] S. Zhou and M. Cui, “Approximate solution for a variable-coefficient semilinear heat equation with nonlocal boundary conditions,” International Journal of Computer Mathematics, vol. 86, pp. 2248--2258, 2009. · Zbl 1182.35143 · doi:10.1080/00207160903229881
[24] F. Geng and M. Cui, “New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions,” Journal of Computational and Applied Mathematics, vol. 233, no. 2, pp. 165-172, 2009. · Zbl 1205.65216 · doi:10.1016/j.cam.2009.07.007
[25] J. Du and M. Cui, “Solving the forced Duffing equations with integral boundary conditions in the reproducing kernel space,” International Journal of Computer Mathematics, vol. 87, pp. 2088-2100, 2010. · Zbl 1213.65106
[26] X. Lv and M. Cui, “An efficient computational method for linear fifth-order two-point boundary value problems,” Journal of Computational and Applied Mathematics, vol. 234, no. 5, pp. 1551-1558, 2010. · Zbl 1191.65103 · doi:10.1016/j.cam.2010.02.036
[27] W. Jiang and M. Cui, “Constructive proof for existence of nonlinear two-point boundary value problems,” Applied Mathematics and Computation, vol. 215, no. 5, pp. 1937-1948, 2009. · Zbl 1187.34030 · doi:10.1016/j.amc.2009.07.044
[28] J. Du and M. Cui, “Constructive proof of existence for a class of fourth-order nonlinear BVPs,” Computers and Mathematics with Applications, vol. 59, no. 2, pp. 903-911, 2010. · Zbl 1189.34038 · doi:10.1016/j.camwa.2009.10.003
[29] M. Cui and H. Du, “Representation of exact solution for the nonlinear Volterra-Fredholm integral equations,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1795-1802, 2006. · Zbl 1110.45005 · doi:10.1016/j.amc.2006.06.016
[30] B. Y. Wu and X. Y. Li, “Iterative reproducing kernel method for nonlinear oscillator with discontinuity,” Applied Mathematics Letters, vol. 23, no. 10, pp. 1301-1304, 2010. · Zbl 1202.34074 · doi:10.1016/j.aml.2010.06.018
[31] H. Jafari and M. A. Firoozjaee, “Homotopy analysis method for KdV equation,” Surveys in Mathematics and Its Applications, vol. 5, pp. 89--98, 2010. · Zbl 1198.65255