zbMATH — the first resource for mathematics

Two-level stabilized finite element method for Stokes eigenvalue problem. (English) Zbl 1266.65192
Summary: A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size $$H$$ and a Stokes problem on a fine mesh with mesh size $$h=O(H^2)$$, which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size $$h$$. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method.

MSC:
 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
FreeFem++
Full Text:
References:
 [1] Babuska, I.; Osborn, J. E.; Ciarlet, P. G. (ed.); Lions, J. L. (ed.), Eigenvalue problems, No. II, 641-787, (1991), Amsterdam · Zbl 0875.65087 [2] Babuska, I.; Osborn, J. E., Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp., 52, 275-297, (1989) · Zbl 0675.65108 [3] Lin, Q.; Xie, H., Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method, Appl. Numer. Math., 59, 1884-1893, (2009) · Zbl 1201.65202 [4] Lin, Q., Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners, Numer. Math., 58, 631-640, (1991) · Zbl 0695.65064 [5] Jia, S.; Xie, H.; Yin, X.; Gao, S., Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods, Appl. Math., 54, 1-15, (2009) · Zbl 1212.65434 [6] Chen, H.; Jia, S. H.; Xie, H., Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem, Appl. Numer. Math., 61, 615-629, (2011) · Zbl 1209.65126 [7] Chen, H.; Jia, S.; Xie, H., Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems, Appl. Math., 54, 237-250, (2009) · Zbl 1212.65431 [8] Huang, P. Z.; He, Y. N.; Feng, X. L., Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem, Math. Probl. Eng., 2011, 1-14, (2011) · Zbl 1235.74286 [9] Chen, W.; Lin, Q., Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method, Appl. Math., 51, 73-88, (2006) · Zbl 1164.65489 [10] Mercier, B.; Osborn, J.; Rappaz, J.; Raviart, P. A., Eigenvalue approximation by mixed and hybrid methods, Math. Comput., 36, 427-453, (1981) · Zbl 0472.65080 [11] Xu, J.; Zhou, A. H., A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70, 17-25, (2009) · Zbl 0959.65119 [12] Yin, X.; Xie, H.; Jia, S.; Gao, S., Asymptotic expansions and extrapolations of eigenvalues for the Stokes problem by mixed finite element methods, J. Comput. Appl. Math., 215, 127-141, (2008) · Zbl 1149.65090 [13] Lovadina, C.; Lyly, M.; Stenberg, R., A posteriori estimates for the Stokes eigenvalue problem, Numerical Methods for Partial Differential Equations, 25, 244-257, (2009) · Zbl 1169.65109 [14] Luo, F., Lin, Q., and Xie, H. Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods. Preprint at http://arxiv.org/abs/1109.5977 (2011) · Zbl 1261.65112 [15] Hu, J., Huang, Y., and Lin, Q. The lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. Preprint at http://arxiv.org.abs/1112.1145 (2011) · Zbl 1169.76392 [16] Bochev, P.; Dohrmann, C. R.; Gunzburger, M. D., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44, 82-101, (2006) · Zbl 1145.76015 [17] Li, J.; He, Y. N., A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comput. Appl. Math., 214, 58-65, (2008) · Zbl 1132.35436 [18] Li, J.; Chen, Z., A new local stabilized nonconforming finite element method for the Stokes equations, Computing, 82, 157-170, (2008) · Zbl 1155.65101 [19] Li, J.; He, Y. N.; Chen, Z. X., A new stabilized finite element method for the transient Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 197, 22-35, (2007) · Zbl 1169.76392 [20] Li, J., Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations, Appl. Math. Comput., 182, 1470-1481, (2006) · Zbl 1151.76528 [21] Huang, P. Z.; Zhang, T.; Si, Z. Y., A stabilized Oseen iterative finite element method for stationary conduction-convection equations, Math. Meth. Appl. Sci., 35, 103-118, (2012) · Zbl 1427.76129 [22] Xu, J., A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15, 231-237, (1994) · Zbl 0795.65077 [23] Xu, J., Two-grid discretization techniques for linear and nonlinear pdes, SIAM J. Numer. Anal., 33, 1759-1778, (1996) · Zbl 0860.65119 [24] Layton, W.; Tobiska, L., A two-level method with backtracking for the Navier-Stokes equations, SIAM J. Numer. Anal., 35, 2035-2054, (1998) · Zbl 0913.76050 [25] Ma, F. Y.; Ma, Y. C.; Wo, W. F., Local and parallel finite element algorithms based on twogrid discretization for steady Navier-Stokes equations, Appl. Math. Mech. -Engl. Ed., 28, 27-35, (2007) · Zbl 1231.65216 [26] Qin, X. Q.; Ma, Y. C.; Zhang, Y., Two-grid method for characteristics finite-element solution of 2D nonlinear convection-dominated diffusion problem, Appl. Math. Mech. -Engl. Ed., 26, 1506-1514, (2005) · Zbl 1170.76334 [27] Wang, C.; Huang, Z. P.; Li, L. K., Two-grid partition of unity method for second order elliptic problems, Appl. Math. Mech. -Engl. Ed., 29, 527-533, (2008) · Zbl 1231.65200 [28] Zhang, Y.; He, Y. N., A two-level finite element method for the stationary Navier-Stokes equations based on a stabilized local projection, Numer. Meth. Part. Differ. Equ., 27, 460-477, (2011) · Zbl 1428.35318 [29] Ervin, V.; Layton, W.; Maubach, J., A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations, Numer. Meth. Part. Differ. Equ., 12, 333-346, (1996) · Zbl 0852.76039 [30] He, Y. N.; Li, K. T., Two-level stabilized finite element methods for the steady Navier-Stokes problem, Computing, 74, 337-351, (2005) · Zbl 1099.65111 [31] He, Y. N.; Wang, A. W., A simplified two-level method for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 197, 1568-1576, (2008) · Zbl 1194.76120 [32] Shang, Y. Q.; Luo, Z. D., A parallel two-level finite element method for the Navier-Stokes equations, Appl. Math. Mech. -Engl. Ed., 31, 1429-1438, (2010) · Zbl 1410.76196 [33] Becker, R.; Hansbo, P., A simple pressure stabilization method for the Stokes equation, Commun. Numer. Meth. Engrg., 24, 1421-1430, (2008) · Zbl 1153.76036 [34] Hecht, F., Pironneau, O., Hyaric, A. L., and Ohtsuka, K. FreeFEM++, Version 2.3-3 (2008) Software avaible at http://www.freefem.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.