zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The complex network synchronization via chaos control nodes. (English) Zbl 1266.93121
Summary: We investigate chaos control nodes of the complex network synchronization. The structure of the coupling functions between the connected nodes is obtained based on the chaos control method and Lyapunov stability theory. Moreover a complex network with nodes of the new unified Loren-Chen-Lü system, Coullet system, Chee-Lee system, and the New system is taken as an example; numerical simulations are used to verify the effectiveness of the method.

MSC:
93D05Lyapunov and other classical stabilities of control systems
34D06Synchronization
34H10Chaos control (ODE)
05C82Small world graphs, complex networks (graph theory)
WorldCat.org
Full Text: DOI
References:
[1] P. Erdös and A. Rényi, “On the evolution of random graphs,” Publication of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 5, p. 17, 1960. · Zbl 0103.16301
[2] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree distributions and their applications,” Physical Review E, vol. 64, Article ID 26118, 17 pages, 2001. · doi:10.1103/PhysRevE.64.026118
[3] F. M. Atay, J. Jost, and A. Wende, “Delays, connection topology, and synchronization of coupled chaotic maps,” Physical Review Letters, vol. 92, no. 14, pp. 144101-1, 2004. · doi:10.1103/PhysRevLett.92.144101
[4] A. E. Motter, C. Zhou, and J. Kurths, “Network synchronization, diffusion, and the paradox of heterogeneity,” Physical Review E, vol. 71, Article ID 016116, 9 pages, 2005. · doi:10.1103/PhysRevE.71.016116
[5] M. Timme, F. Wolf, and T. Geisel, “Topological speed limits to network synchronization,” Physical Review Letters, vol. 92, Article ID 074101, 4 pages, 2004. · doi:10.1103/PhysRevLett.92.074101
[6] P. Checco, M. Biey, and L. Kocarev, “Synchronization in random networks with given expected degree sequences,” Chaos, Solitons & Fractals, vol. 35, no. 3, pp. 562-577, 2008. · Zbl 1138.93050 · doi:10.1016/j.chaos.2006.05.063
[7] J. Lü, X. Yu, and G. Chen, “Chaos synchronization of general complex dynamical networks,” Physica A, vol. 334, no. 1-2, pp. 281-302, 2004. · doi:10.1016/j.physa.2003.10.052
[8] W. Lu and T. Chen, “Synchronization analysis of linearly coupled networks of discrete time systems,” Physica D, vol. 198, no. 1-2, pp. 148-168, 2004. · Zbl 1071.39011 · doi:10.1016/j.physd.2004.08.024
[9] X. Han and J. Lu, “The changes on synchronizing ability of coupled networks from ring networks to chain networks,” Science in China F, vol. 50, no. 4, pp. 615-624, 2007. · Zbl 1169.34327 · doi:10.1007/s11432-007-0048-z
[10] G. He and J. Yang, “Adaptive synchronization in nonlinearly coupled dynamical networks,” Chaos, Solitons and Fractals, vol. 38, no. 5, pp. 1254-1259, 2008. · Zbl 1154.93424 · doi:10.1016/j.chaos.2007.07.067
[11] Y. C. Hung, Y. T. Huang, M. C. Ho, and C. K. Hu, “Paths to globally generalized synchronization in scale-free networks,” Physical Review E, vol. 77, Article ID 16202, 8 pages, 2008.
[12] Y. Gao, L. X. Li, H. P. Peng, Y. X. Yang, and X. H. Zhang, “Adaptive synchronization in a united complex dynamical network with multi-links,” Acta Physica Sinica, vol. 57, no. 4, pp. 2081-2091, 2008. · Zbl 1174.93563
[13] W. D. Pei, Z. Q. Chen, and Z. Z. Yuan, “A dynamic epidemic control model on uncorrelated complex networks,” Chinese Physics B, vol. 17, p. 373, 2008. · doi:10.1088/1674-1056/17/2/003
[14] A. Barrat, M. Barthelemy, and A. Vespignani, “Weighted evolving networks: coupling topology and weight dynamics,” Physical Review Letters, vol. 92, Article ID 228701, 4 pages, 2004. · doi:10.1103/PhysRevLett.92.228701
[15] Y. Li, Y. Chen, and B. Li, “Anticipated function synchronization with unknown parameters in discrete-time chaotic systems,” International Journal of Modern Physics C, vol. 20, no. 4, pp. 597-608, 2009. · Zbl 1179.37051 · doi:10.1142/S0129183109013820
[16] J. Qin and H. J. Yu, “Synchronization of star-network of hyperchaotic Rossler systems,” Acta Physica Sinica, vol. 56, pp. 6828-6835, 2007. · Zbl 1150.93422
[17] Z. Zeng and J. Wang, “Complete stability of cellular neural networks with time-varying delays,” IEEE Transactions on Circuits and Systems, vol. 53, no. 4, pp. 944-955, 2006. · doi:10.1109/TCSI.2005.859616
[18] J. Cao, P. Li, and W. Wang, “Global synchronization in arrays of delayed neural networks with constant and delayed coupling,” Physics Letters A, vol. 353, no. 4, pp. 318-325, 2006. · doi:10.1016/j.physleta.2005.12.092
[19] L. Ling, L. Gang, G. Li, M. Le, J.-R. Zou, and Y. Ming, “Generalized chaos synchronization of a weighted complex network with different nodes,” Chinese Physics B, vol. 19, Article ID 080507, 2010. · doi:10.1088/1674-1056/19/8/080507
[20] L. Lü, Nonlinear Dynamics and Chaos, Dalian Publishing House, Dalian, China, 2000.
[21] J. Lü, G. Chen, D. Cheng, and S. Celikovsky, “Bridge the gap between the Lorenz system and the Chen system,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 12, no. 12, pp. 2917-2926, 2002. · Zbl 1043.37026 · doi:10.1142/S021812740200631X
[22] J. Lü, G. Chen, and D. Cheng, “A new chaotic system and beyond: the generalized Lorenz-like system,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 14, no. 5, pp. 1507-1537, 2004. · Zbl 1129.37323 · doi:10.1142/S021812740401014X
[23] J. Lü and G. Chen, “A new chaotic attractor coined,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 12, no. 3, pp. 659-661, 2002. · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[24] G. Chen, J. Zhou, and Z. Liu, “Global synchronization of coupled delayed neural networks and applications to chaotic CNN models,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 14, no. 7, pp. 2229-2240, 2004. · Zbl 1077.37506 · doi:10.1142/S0218127404010655
[25] Y. Chen and X. Li, “Function projective synchronization between two chaotic systems,” Zeitschrift für Naturforschung, vol. 62, p. 176, 2007. · Zbl 1203.37134 · http://www.znaturforsch.com/aa/v62a/c62a.htm
[26] Y. Q. Yang and Y. Chen, “Chaos in the fractional order generalized Lorenz canonical form,” Chinese Physics Letters, vol. 26, Article ID 100501, 2009. · doi:10.1088/0256-307X/26/10/100501
[27] H. L. An and Y. Chen, “The function cascade synchronization method and applications,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 10, pp. 2246-2255, 2008. · Zbl 1221.93124 · doi:10.1016/j.cnsns.2007.05.029
[28] M. J. Wang, X. Y. Wang, and Y. J. Niu, “Projective synchronization of a complex network with different fractional order chaos nodes,” Chinese Physics B, vol. 20, Article ID 010508, 2011. · doi:10.1088/1674-1056/20/1/010508
[29] Y. Chen and Z. Yan, “New exact solutions of (2 + 1)-dimensional Gardner equation via the new sine-Gordon equation expansion method,” Chaos, Solitons and Fractals, vol. 26, no. 2, pp. 399-406, 2005. · Zbl 1070.35058 · doi:10.1016/j.chaos.2005.01.004
[30] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130-141, 1963. · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[31] G. Chen and T. Ueta, “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 9, no. 7, pp. 1465-1466, 1999. · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[32] M. B. Sedra and A. El Boukili, “Some physical aspects of Moyal noncommutativity,” Chinese Journal of Physics, vol. 47, no. 3, pp. 305-315, 2009.