Oon, Shea-Ming Note on the lower bound of least common multiple. (English) Zbl 1267.11004 Abstr. Appl. Anal. 2013, Article ID 218125, 4 p. (2013). Summary: Consider a sequence of positive integers in arithmetic progression \(u_k = u_0 + kr\) with \((u_0, r) = 1\). Denote the least common multiple of \(u_0, \dots, u_n\) by \(L_n\). We show that if \(n \geq r^2 + r\), then \(L_n \geq u_0 r^{r+1}(r + 1)\), and we obtain optimum result on \(n\) in some cases for such estimate. Besides, for quadratic sequences \(m^2 + c, (m + 1)^2 + c, \dots, n^2 + c\), we also show that the least common multiple is at least \(2^n\) when \(m \leq \lceil n/2 \rceil\), which sharpens a recent result of B. Farhi [C. R., Math., Acad. Sci. Paris 341, No. 8, 469–474 (2005; Zbl 1117.11005)]. Cited in 2 ReviewsCited in 5 Documents MSC: 11A05 Multiplicative structure; Euclidean algorithm; greatest common divisors Keywords:sequence of positive integers in arithmetic progression; lower bound of least common multiple Citations:Zbl 1117.11005 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Green, B.; Tao, T., The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics, 167, 2, 481-547 (2008) · Zbl 1191.11025 · doi:10.4007/annals.2008.167.481 [2] Hanson, D., On the product of the primes, Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques, 15, 33-37 (1972) · Zbl 0231.10008 [3] Nair, M., On Chebyshev-type inequalities for primes, The American Mathematical Monthly, 89, 2, 126-129 (1982) · Zbl 0494.10004 · doi:10.2307/2320934 [4] Shapiro, H. N., On the number of primes less than or equal \(x\), Proceedings of the American Mathematical Society, 1, 346-348 (1950) · Zbl 0037.31403 [5] Farhi, B., Minorations non triviales du plus petit commun multiple de certaines suites finies d’entiers, Comptes Rendus Mathématique. Académie des Sciences. Paris, 341, 8, 469-474 (2005) · Zbl 1117.11005 · doi:10.1016/j.crma.2005.09.019 [6] Farhi, B.; Kane, D., New results on the least common multiple of consecutive integers, Proceedings of the American Mathematical Society, 137, 6, 1933-1939 (2009) · Zbl 1229.11007 · doi:10.1090/S0002-9939-08-09730-X [7] Hong, S.; Qian, G., The least common multiple of consecutive arithmetic progression terms, Proceedings of the Edinburgh Mathematical Society, 54, 2, 431-441 (2011) · Zbl 1304.11008 · doi:10.1017/S0013091509000431 [8] Hong, S.; Yang, Y., Improvements of lower bounds for the least common multiple of finite arithmetic progressions, Proceedings of the American Mathematical Society, 136, 12, 4111-4114 (2008) · Zbl 1157.11001 · doi:10.1090/S0002-9939-08-09565-8 [9] Hong, S.; Kominers, S. D., Further improvements of lower bounds for the least common multiples of arithmetic progressions, Proceedings of the American Mathematical Society, 138, 3, 809-813 (2010) · Zbl 1196.11007 · doi:10.1090/S0002-9939-09-10083-7 [10] Wu, R.; Tan, Q.; Hong, S., New lower bounds for the least common multiple of arithmetic progressions [11] Farhi, B., Nontrivial lower bounds for the least common multiple of some finite sequences of integers, Journal of Number Theory, 125, 2, 393-411 (2007) · Zbl 1124.11005 · doi:10.1016/j.jnt.2006.10.017 [12] Qian, G.; Tan, Q.; Hong, S., The least common multiple of consecutive terms in a quadratic progression, Bulletin of the Australian Mathematical Society, 86, 389-404 (2012) · Zbl 1290.11015 [13] Hong, S.; Feng, W., Lower bounds for the least common multiple of finite arithmetic progressions, Comptes Rendus Mathématique. Académie des Sciences. Paris, 343, 11-12, 695-698 (2006) · Zbl 1156.11004 · doi:10.1016/j.crma.2006.11.002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.