Avelin, Helen Computations of Green’s function and its Fourier coefficients on Fuchsian groups. (English) Zbl 1267.11061 Exp. Math. 19, No. 3, 317-334 (2010). Summary: We develop algorithms for computations of Green’s function and its Fourier coefficients, \(F_n(z;s)\), on Fuchsian groups with one cusp. An analogue of a Rankin-Selberg bound for \(F_n(z;s)\) is presented. Cited in 5 Documents MSC: 11F72 Spectral theory; trace formulas (e.g., that of Selberg) 11F30 Fourier coefficients of automorphic forms 33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\) Keywords:Green’s function; resolvent kernel; Rankin-Selberg bound; computational number theory; Fourier coefficients; algorithms; spectral theory; K-Bessel function; I-Bessel function Software:Algorithm 831 PDF BibTeX XML Cite \textit{H. Avelin}, Exp. Math. 19, No. 3, 317--334 (2010; Zbl 1267.11061) Full Text: DOI Euclid OpenURL References: [1] Abramowitz M., Handbook of Mathematical Functions (1964) · Zbl 0171.38503 [2] DOI: 10.1090/S0025-5718-06-01911-9 · Zbl 1114.11049 [3] DOI: 10.1080/10586458.2010.10390627 · Zbl 1267.11062 [4] Barnard A., PhD thesis, in: ”The Singular Theta Correspondence, Lorentzian Lattices and Borcherds-Kac-Moody Algebras.” (2003) [5] Bender C. M., Advanced Mathematical Methods for Scientists and Engineers, Asymptotic Methods and Perturbation Theory (1999) · Zbl 0938.34001 [6] DOI: 10.1007/s002220050232 · Zbl 0919.11036 [7] DOI: 10.1137/S003614450444436X · Zbl 1087.34032 [8] Bruinier J. H., Borhcerds Products on O(2, l) and Chern Classes of Heegner Divisors, Lecture Notes in Math. 1780 (2002) · Zbl 1004.11021 [9] Conrey J. B., Notices of the AMS 50 pp 341– (2003) [10] Erdélyi A., Higher Transcendental Functions 2 (1953) · Zbl 0051.30303 [11] DOI: 10.1515/crll.1977.293-294.143 · Zbl 0352.30012 [12] DOI: 10.1006/jcph.2001.6894 · Zbl 0996.65026 [13] DOI: 10.1016/S0377-0427(02)00608-8 · Zbl 1026.65015 [14] DOI: 10.1145/992200.992204 · Zbl 1072.65025 [15] DOI: 10.1145/992200.992203 · Zbl 1072.65024 [16] Hejhal D. A., The Selberg Trace Formula for PSL(2, R), vol. 1, Lecture Notes in Math. 548 (1976) · Zbl 0347.10018 [17] Hejhal D. A., Recent Progress in Analytic Number Theory 2 pp 95– (1981) [18] Hejhal D. A., The Selberg Trace Formula for PSL(2, R), vol. 2, Lecture Notes in Math. 1001 (1983) · Zbl 0543.10020 [19] Hejhal D. A., Mem. Amer. Math. Soc. pp 469– (1992) [20] Hejhal D. A., Emerging Applications of Number Theory pp 291– (1999) [21] Iwaniec H., Topics in Classical Automorphic Forms (1997) · Zbl 0905.11023 [22] Iwaniec H., Spectral Methods of Automorphic Forms,, 2. ed. (2002) · Zbl 1006.11024 [23] DOI: 10.1007/s00039-003-0445-4 · Zbl 1048.37009 [24] Niebur D., Nagoya Math. J. 52 pp 133– (1973) [25] Odlyzko A. M., ”Correspondence about the Origins of the Hilbert-Pólya Conjecture.” (2009) [26] DOI: 10.1098/rsta.1954.0021 [27] Olver F. W.J., Asymptotics and Special Functions. (1974) · Zbl 0303.41035 [28] Selberg A., J. Indian Math. Soc. B 20 pp 47– (1956) [29] DOI: 10.2307/1970201 · Zbl 0218.10045 [30] DOI: 10.1215/S0012-7094-04-12334-6 · Zbl 1060.37023 [31] Watson G. N., A Treatise on the Theory of Bessel Functions,, 2. ed. (1944) · Zbl 0063.08184 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.