×

On the integrality of the Taylor coefficients of mirror maps. (English) Zbl 1267.11077

Summary: We show that the Taylor coefficients of the series \({\mathbf q}(z)=z{\text{ exp}}({\mathbf G}(z)/{\mathbf F}(z))\) are integers, where \({\mathbf F}(z)\) and \({\mathbf G}(z)+{\text{log}}(z){\mathbf F}(z)\) are specific solutions of certain hypergeometric differential equations with maximal unipotent monodromy at \(z=0\). We also address the question of finding the largest integer \(u\) such that the Taylor coefficients of \((z^{-1}{\mathbf q}(z))^{1/u}\) are still integers. As consequences, we are able to prove numerous integrality results for the Taylor coefficients of mirror maps of Calabi-Yau complete intersections in weighted projective spaces, which improve and refine previous results by B. H. Lian and S.-T. Yau and by V. V. Zudilin [Math. Notes 71, No. 5, 604–616 (2002); translation from Mat. Zametki 71, No. 5, 662–676 (2002; Zbl 1043.11060)]. In particular, we prove the general “integrality” conjecture of Zudilin about these mirror maps

MSC:

11G42 Arithmetic mirror symmetry
14J33 Mirror symmetry (algebro-geometric aspects)
11F30 Fourier coefficients of automorphic forms
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
12H25 \(p\)-adic differential equations
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
33C20 Generalized hypergeometric series, \({}_pF_q\)

Citations:

Zbl 1043.11060
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] G. Almkvist, C. Van Enckevort, D. Van Straten, and W. Zudilin, Tables of Calabi-Yau equations ,
[2] G. Almkvist and W. Zudilin, “Differential equations, mirror maps and zeta values” in Mirror Symmetry, V , AMS/IP Stud. Adv. Math. 38 , Amer. Math. Soc., Providence, 2006, 481–515. · Zbl 1118.14043
[3] Y. André, G-fonctions et transcendance , J. Reine Angew. Math. 476 (1996), 95–125. · Zbl 0848.11033
[4] G. E. Andrews, R. Askey, and R. Roy, Special Functions , Encyclopedia Math. Appl. 71 , Cambridge Univ. Press, Cambridge, 1999. · Zbl 0920.33001
[5] V. V. Batyrev and D. Van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties , Comm. Math. Phys. 168 (1995), 493–533. · Zbl 0843.14016
[6] F. Beukers and G. Heckman, Monodromy for the hypergeometric function \(_ nF_ n-1\) , Invent. Math. 95 (1989), 325–354. · Zbl 0663.30044
[7] P. Candelas, X. C. De La Ossa, P. S. Green, and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , Nucl. Phys. B 359 (1991), 21–74. · Zbl 1098.32506
[8] A. Corti and V. Golyshev, Hypergeometric equations and weighted projective spaces , · Zbl 1237.14022
[9] B. Dwork, p-Adic cycles , Inst. Hautes Études Sci. Publ. Math. 37 (1969), 27–115. · Zbl 0284.14008
[10] -, On \(p\)-adic differential equations, IV: Generalized hypergeometric functions as \(p\)-adic analytic functions in one variable , Ann. Sci. École Norm. Sup. (4) 6 (1973), 295–315. · Zbl 0309.14020
[11] A. B. Givental, Equivariant Gromov-Witten invariants , Internat. Math. Res. Notices 1996 , no. 13, 613–663. · Zbl 0881.55006
[12] N. Heninger, E. M. Rains, and N. J. A. Sloane, On the integrality of \(n\)th roots of generating functions , J. Combin. Theory Ser. A 113 (2006), 1732–1745. · Zbl 1203.94138
[13] S. Hosono, A. Klemm, S. Theisen, and S.-T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces , Nuclear Phys. B 433 (1995), 501–552. · Zbl 1020.32508
[14] M. Kontsevich, A. Schwarz, and V. Vologodsky, Integrality of instanton numbers and \(p\)-adic \(B\)-model , Phys. Lett. B 637 (2006), 97–101. · Zbl 1247.14058
[15] C. Krattenthaler and T. Rivoal, On the integrality of Taylor coefficients of mirror maps in several variables , · Zbl 1186.14042
[16] -, On the integrality of the Taylor coefficients of mirror maps, II , to appear in Commun. Number Theory Phys.
[17] E. Landau, Sur les conditions de divisibilité d’un produit de factorielles par un autre , Nouv. Ann. (3) 19 (1900), 344–362. · JFM 31.0183.05
[18] S. Lang, Cyclotomic Fields, II , Grad. Texts in Math. 69 , Springer, New York, 1980. · Zbl 0435.12001
[19] B. H. Lian, K. Liu, and S.-T. Yau, Mirror principle, I , Asian J. Math. 1 (1997), 729–763. · Zbl 0953.14026
[20] B. H. Lian and S.-T. Yau, Arithmetic properties of mirror map and quantum coupling , Comm. Math. Phys. 176 (1996), 163–191. · Zbl 0867.14017
[21] -, “Mirror maps, modular relations and hypergeometric series, I” appeared as “Integrality of certain exponential series” in Algebra and Geometry ( Taipei, Taiwan, 1995 ), Lect. Algebra Geom. 2 , Int. Press, Cambridge, Mass., 1998, 215–227. · Zbl 0998.12009
[22] -, “The \(n\)th root of the mirror map” in Calabi-Yau Varieties and Mirror Symmetry (Toronto, Ont., 2001) , Fields Inst. Commun. 38 , Amer. Math. Soc., Providence, 2003, 195–199. · Zbl 1048.11049
[23] D. R. Morrison, Mirror symmetry and rational curves on quintic threefolds: A guide for mathematicians , J. Amer. Math. Soc. 6 (1993), 223–247. JSTOR: · Zbl 0843.14005
[24] R. Pandharipande, “Rational curves on hypersurfaces (after A. Givental)” in Séminaire Bourbaki, Vol. 1997/98 , Astérisque 252 , Soc. Math. France, Montrouge, 1998 exp. no. 848, 307–340. · Zbl 0932.14029
[25] F. Rodriguez-Villegas, “Hypergeometric families of Calabi-Yau manifolds” in Calabi-Yau Varieties and Mirror Symmetry (Toronto, Ont., 2001) , Fields Inst. Commun. 38 , Amer. Math. Soc., Providence, 2003, 223–231. · Zbl 1062.11038
[26] -, Integral ratios of factorials and algebraic hypergeometric functions ,
[27] J. Stienstra, “GKZ hypergeometric structures” in Arithmetic and Geometry around Hypergeometric Functions (Istanbul, 2005) , Progr. Math. 260 , Birkhäuser, Basel, 2007, 313–317. · Zbl 1119.14003
[28] C. Voisin, Mirror Symmetry , SMF/AMS Texts Monogr. 1 , Amer. Math. Soc., Providence, 1999.
[29] V. Vologodsky, Integrality of instanton numbers , · Zbl 1247.14058
[30] M. Yoshida, Fuchsian Differential Equations , Aspects Math. E11 , Vieweg, Braunschweig, 1987. · Zbl 0618.35001
[31] V. V. Zudilin, Integrality of power expansions related to hypergeometric series , Mathematical Notes 71 (2002), 604–616. · Zbl 1043.11060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.