zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sensitivity and chaos of semigroup actions. (English) Zbl 1267.37010
A semiflow $(T,X,\pi)$, shortly $(T,X)$, is a triple consisting of a topological monoid $T$, a metric space $(X,d)$ and a continuous action $\pi:T\times X\to X$ of $T$ on $X$. The semiflow $(T,X)$ is said to be: {\parindent=6mm \item{(a)} “minimal” if $\overline{Tx}=X$ for every $x\in X$; \item{(b)} “syndetically transitive” if for any nonempty open subsets $U,V$ of $X$, the set $N(U,V)=\{t\in T\,|\,U\cap t^{-1}V\neq \emptyset\}$ is a syndetic subset of $T$; \item{(c)} “pointwise equicontinuous” if every point $x\in X$ is an equicontinuity point, meaning that for every $\varepsilon>0$ there is $\delta>0$ such that $d(x,y)<\delta$ implies $d(tx,ty)<\varepsilon$ for every $t\in T$; \item{(d)} sensitive if there exists $c>0$ (a sensitivity constant) such that for every $x\in X$ and every open neighborhood $U$ of $x$ there exists $y\in U$ and $t\in T$ with $d(tx,ty)>c$; \item{(e)} Li-Yorke chaotic if there is an uncountable scrambled subset $Y$ of $X$, meaning that for any two distinct points $x,y\in Y$ there are two infinite sequences $(s_n)$, $(t_n)$ in $T$ such that $\lim_{n\to\infty} d(s_nx, s_ny)>0$ and $\lim_{n\to\infty} d(t_nx, t_ny)=0$. \par} A point $x\in X$ is a “transitivity point” of $(T,X)$ if $Tx$ is dense in $X$. A subset $O=\{x_1, \dots, x_n\}$ of $X$ is an $n$-periodic orbit of $(T,X)$ if the following conditions hold: {\parindent=6mm \item{(1)} each $t\in T$ acts on $O$ either as an $n$-cyclic permutation, or as the identity map; \item{(2)} not all elements $t\in T$ act on $O$ as the identity map. \par} A topological semigroup $T$ is called a C-semigroup if for every $t\in T$ the subset $\overline{T\setminus Tt}$ of $T$ is compact. In the paper under review the two main results are the following theorems. Theorem 1. Let $(T,X)$ be a semiflow in which $X$ is a Polish space and $T$ is a C-semigroup. If $(T,X)$ is syndetically transitive, then it is either (i) minimal and pointwise equicontinuous, or, (ii) sensitive. Theorem 2. Let $(T,X)$ be a semiflow in which $X$ is a Polish space and $T$ is abelian. Suppose that $(T,X)$ has a transitive point $x$ and an $n$-periodic orbit $O$. Let $S$ be the set of all $t\in T$ which act on $O$ as the identity map and suppose that the set $\overline{Sx}$ has no isolated points. Then $(T,X)$ is Li-Yorke chaotic. The paper is well-written and interesting.

37B05Transformations and group actions with special properties
54H20Topological dynamics
Full Text: DOI
[1] Akin, E., Kolyada, S.: Li-Yorke sensitivity. Nonlinearity 16, 1421--1433 (2003) · Zbl 1045.37004 · doi:10.1088/0951-7715/16/4/313
[2] Auslander, J., Yorke, J.: Interval maps, factors of maps and chaos. Tohoku Math. J. 32, 177--188 (1980) · Zbl 0448.54040 · doi:10.2748/tmj/1178229634
[3] Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99, 332--334 (1992) · Zbl 0758.58019 · doi:10.2307/2324899
[4] Devaney, R.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-Wesley, Redwood (1989) · Zbl 0695.58002
[5] Glasner, E., Weiss, B.: Sensitive dependence on initial conditions. Nonlinearity 6, 1067--1075 (1993) · Zbl 0790.58025 · doi:10.1088/0951-7715/6/6/014
[6] Guckenheimer, J.: Sensitive dependence on initial conditions for one-dimensional maps. Commun. Math. Phys. 70, 133--160 (1979) · Zbl 0429.58012 · doi:10.1007/BF01982351
[7] Huang, W., Ye, X.: An explicit scattering, non-weakly mixing example and weak disjointness. Nonlinearity 15, 849--862 (2002) · Zbl 1018.54026 · doi:10.1088/0951-7715/15/3/320
[8] Huang, W., Ye, X.: Devaney’s chaos or 2-scattering implies Li Yorke’s chaos. Topol. Appl. 17, 259--272 (2002) · Zbl 0997.54061 · doi:10.1016/S0166-8641(01)00025-6
[9] Kontorovich, E., Megrelishvili, M.: A note on sensitivity of semigroup actions. Semigroup Forum 76, 133--141 (2008) · Zbl 1161.47029 · doi:10.1007/s00233-007-9033-5
[10] Kuratowski, K.: Applications of Baire-category method to the problem of independents sets. Fundam. Math. 81, 65--72 (1974) · Zbl 0311.54036
[11] Li, T., Yorke, J.: Period 3 implies chaos. Am. Math. Mon. 82, 985--992 (1975) · Zbl 0351.92021 · doi:10.2307/2318254
[12] Su, X., Zhou, Y.: Chaotic semigroup action. Appl. Math. J. Chin. Univ. Ser. A 19, 292--296 (2004) · Zbl 1083.54528