×

Noncommutative \(L^{p}\)-spaces without the completely bounded approximation property. (English) Zbl 1267.46072

Summary: For any \(1\leq p\leq\infty\) different from 2, we give examples of noncommutative \(L^{p}\)-spaces without the completely bounded approximation property. Let \(F\) be a non-Archimedian local field. If \(p > 4\) or \(p < 4/3\) and \(r\geq 3\), these examples are the noncommutative \(L^{p}\)-spaces of the von Neumann algebra of lattices in SL\(_{r}(F)\) or in SL\(_{r}({\mathbb{R}})\). For other values of \(p\), the examples are the noncommutative \(L^{p}\)-spaces of the von Neumann algebra of lattices in SL\(_{r}(F)\) for \(r\) large enough depending on \(p\).
We also prove that, if \(r\geq3\), lattices in SL\(_{r}(F)\) or SL\(_{r}({\mathbb{R}})\) do not have the approximation property of Haagerup and Kraus. This provides examples of exact \(C^{*}\)-algebras without the operator space approximation property.

MSC:

46L07 Operator spaces and completely bounded maps
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
46B28 Spaces of operators; tensor products; approximation properties
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] N. Bourbaki, Éléments de mathématique, Fasc. XIII, Livre VI: Intégration , 2nd ed., Actualités Scientifiques et Industrielles 1175 , Hermann, Paris, 1965.
[2] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group , Boll. Un. Mat. Ital. A (6) 3 (1984), 297-302. · Zbl 0564.43004
[3] M. Bożejko and G. Fendler, Herz-Schur multipliers and uniformly bounded representations of discrete groups , Arch. Math. 57 (1991), 290-298. · Zbl 0726.43007
[4] N. P. Brown and N. Ozawa, C \ast - Algebras and Finite-Dimensional Approximations , Grad. Stud. Math. 88 , Amer. Math. Soc., Providence, 2008. · Zbl 1160.46001
[5] J. de Cannière and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups , Amer. J. Math. 107 (1985), 455-500. · Zbl 0577.43002
[6] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one , Invent. Math. 96 (1989), 507-549. · Zbl 0681.43012
[7] J. Diestel and J. J. Uhl, jr, Vector Measures , Math. Surv. 15 , Amer. Math. Soc., Providence, 1977.
[8] E. G. Effros and Z.-J. Ruan, Operator Spaces , London Math. Soc. Monogr. N.S. 23 , Clarendon Press/Oxford Univ. Press, New York, 2000.
[9] E. Guentner, N. Higson, and S. Weinberger, The Novikov conjecture for linear groups , Publ. Math. Inst. Hautes Études Sci. 101 (2005), 243-268. · Zbl 1073.19003
[10] U. Haagerup, Group C \ast -algebras without the completely bounded approximation property , preprint, 1986.
[11] U. Haagerup and J. Kraus, Approximation properties for group C \ast -algebras and group von Neumann algebras , Trans. Amer. Math. Soc. 344 (1994), 667-699. · Zbl 0806.43002
[12] U. Haagerup, T. Steenstrup, and R. Szwarc, Schur multipliers and spherical functions on homogeneous trees , Internat. J. Math. 21 (2010), 1337-1382. · Zbl 1272.43003
[13] M. Junge, Applications of Fubini’s theorem for noncommutative L p spaces , preprint, 2004. · Zbl 1077.46056
[14] M. Junge, N. J. Nielsen, Z.-J. Ruan, and Q. Xu, \(\mathscr{C}\mathscr{O}\mathscr{L}_{p}\) spaces-the local structure of non-commutative L p spaces , Adv. Math. 187 (2004), 257-319. · Zbl 1084.46049
[15] M. Junge and Z.-J. Ruan, Approximation properties for noncommutative L p -spaces associated with discrete groups , Duke Math. J. 117 (2003), 313-341. · Zbl 1042.46030
[16] E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group C \ast -algebras , Invent. Math. 112 (1993), 449-489. · Zbl 0803.46071
[17] E. Kissin and V. S. Shulman, Operator multipliers , Pacific J. Math. 227 (2006), 109-141. · Zbl 1130.46033
[18] V. Lafforgue, Un renforcement de la propriété ( T ), Duke Math. J. 143 (2008), 559-602. · Zbl 1158.46049
[19] V. Lafforgue, “Propriété ( T ) renforcée et conjecture de Baum-Connes” in Quanta of Maths , Clay Math. Proc. 11 , Amer. Math. Soc., Providence, 2010, 323-345. · Zbl 1216.19007
[20] V. Lafforgue, Un analogue non archimédien d’un résultat de Haagerup et lien avec la propriété ( T ) renforcée , preprint, 2010, (accessed 3 August 2011).
[21] V. Losert, On multipliers and completely bounded multipliers-The case SL(2, R ), preprint, 2010.
[22] S. Neuwirth and E. Ricard, Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group , to appear in Canad. J. Math., preprint, [math.FA] 1001.5332v1 · Zbl 1251.47036
[23] N. Ozawa, About the QWEP conjecture , Internat. J. Math. 15 (2004), 501-530. · Zbl 1056.46051
[24] G. Pisier, Regular operators between non-commutative L p -spaces , Bull. Sci. Math. 119 (1995), 95-118. · Zbl 0826.46056
[25] G. Pisier, Non-Commutative Vector Valued L p -Spaces and Completely p-Summing Maps , Astérisque 247 , Soc. Math. France, Montrouge, 1998. · Zbl 0937.46056
[26] G. Pisier, Similarity Problems and Completely Bounded Maps , 2nd expanded ed., Lecture Notes in Math. 1618 , Springer, Berlin, 2001. · Zbl 0843.47010
[27] G. Pisier, Introduction to Operator Space Theory , London Math. Soc. Lecture Note Ser. 294 , Cambridge Univ. Press, Cambridge, 2003. · Zbl 1093.46001
[28] A. Szankowski, On the uniform approximation property in Banach spaces , Israel J. Math. 49 (1984), 343-359. · Zbl 0578.46013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.