Gao, Hongfen; Cheng, Yumin A complex variable meshless manifold method for fracture problems. (English) Zbl 1267.74124 Int. J. Comput. Methods 7, No. 1 (2010). Summary: Based on the complex variable moving least-squares (CVMLS) approximation and the finite cover theory, the complex variable meshless manifold method (CVMMM) for fracture problems is presented in this paper. The CVMMM employs two cover systems which are the mathematical cover system and the physical cover system. The shape function in the CVMMM is derived with the CVMLS approximation and the finite cover theory. The finite cover theory is used to model cracks which lead to interior discontinuous displacements. At the tip of a crack of a problem, we use the analytical solution near the tip of a crack to extend the trial function of the CVMMM, then the corresponding approximation function is obtained. From the minimum potential energy principle, the corresponding formulae of the CVMMM for fracture problems are presented. Some numerical examples are presented to demonstrate the method in this paper. Cited in 10 Documents MSC: 74S30 Other numerical methods in solid mechanics (MSC2010) 74S70 Complex-variable methods applied to problems in solid mechanics 74R10 Brittle fracture Keywords:complex variable meshless manifold method; finite cover theory; complex variable moving least-squares approximation; crack; stress intensity factor PDF BibTeX XML Full Text: DOI References: [1] Babuska I., Comput. Meth. Appl. Mech. Eng. 139 pp 289– [2] DOI: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N · Zbl 0949.65117 [3] DOI: 10.1002/nme.1620370205 · Zbl 0796.73077 [4] DOI: 10.1016/S0045-7825(96)01078-X · Zbl 0891.73075 [5] DOI: 10.1016/S0045-7825(96)01078-X · Zbl 0891.73075 [6] DOI: 10.1007/s004660050361 · Zbl 0928.74115 [7] Cheng Y. M., Acta Phys. Sin. 54 pp 4463– [8] DOI: 10.1007/s11433-004-0027-y · Zbl 1147.74410 [9] Cheng Y. M., Chin. J. Theor. Appl. Mech. 37 pp 719– [10] Christina B., Eng. Fract. Mech. 68 pp 235– [11] DOI: 10.1016/S0045-7825(96)01085-7 · Zbl 0918.73328 [12] DOI: 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P · Zbl 0869.65069 [13] DOI: 10.1016/S0045-7825(02)00655-2 · Zbl 1031.74052 [14] DOI: 10.1090/S0025-5718-1981-0616367-1 [15] Li S., Acta Mech. Sin. 4 pp 496– [16] DOI: 10.1002/1097-0207(20000730)48:9<1285::AID-NME825>3.0.CO;2-H · Zbl 1052.74618 [17] DOI: 10.1016/j.tafmec.2005.09.002 [18] Li S. C., Chin. J. Rock Mech. Eng. 25 pp 141– [19] DOI: 10.1002/nme.1489 · Zbl 1147.74047 [20] DOI: 10.1002/fld.1650200824 · Zbl 0881.76072 [21] Luan M. T., Chin. J. Geotech. Eng. 25 pp 527– [22] Lucy L. B., Astron. J. 8 pp 1013– [23] DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J · Zbl 0955.74066 [24] Y. Murakami (ed.), Stress Intensity Factors Handbook (Pergamon Press, Oxford, 1987) pp. 118–119. [25] DOI: 10.1007/BF00364252 · Zbl 0764.65068 [26] DOI: 10.1299/kikai1938.41.1103 [27] J. T. Oden and C. A. M. Duarte, The Mathematics of Finite Elements and Applications, ed. J. R. Whiteman (John Wiley & Sons, NY, 1997) pp. 35–54. · Zbl 0891.73067 [28] G. C. Sih, Mechanics of Fracture Initiation and Propagation (Kluwer Academic Publishers, Boston, 1990) pp. 218–219. [29] Timoshenko S. P., Theory of Elasticity (1970) · Zbl 0266.73008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.