The second-order Rytov approximation and residual error in dual-frequency satellite navigation systems. (English) Zbl 1267.78010

Summary: The second-order Rytov approximation has been used to determine ionospheric corrections for the phase path up to third order. We show the transition of the derived expressions to previous results obtained within the ray approximation using the second-order approximation of perturbation theory by solving the eikonal equation. The resulting equation for the phase path is used to determine the residual ionospheric first-, second- and third-order errors of a dual-frequency navigation system, with diffraction effects taken into account. Formulas are derived for the biases and variances of these errors, and these formulas are analyzed and modeled for a turbulent ionosphere. The modeling results show that the third-order error that is determined by random irregularities can be dominant in the residual errors. In particular, the role of random irregularities is enhanced for small elevation angles. Furthermore, in the case of small angles the role of diffraction effects increases. It is pointed out that a need to pass on to diffraction formulas arises when the Fresnel radius exceeds the inner scale of turbulence.


78A40 Waves and radiation in optics and electromagnetic theory
78A45 Diffraction, scattering
Full Text: DOI


[1] Tatarskii V. I., The Effect of a Turbulent Atmosphere on Wave Propagation (1971)
[2] Ishimaru A., Wave Propagation and Scattering in Random Media. Vol. 2. Multiple Scattering, Turbulence, Rough Surfaces and Remote Sensing (1978) · Zbl 0873.65115
[3] Kravtsov Yu. A., Transmission of Radio-Waves through the Earth’s Atmosphere (1983)
[4] Rytov S. M., Introduction to Statistical Radiophysics. Vol. 4. Wave Propagation through Random Media (1989)
[5] Gherm V. E., Radio Sci. 40 pp RS1003– (2005)
[6] DOI: 10.1364/JOSA.73.000500 · doi:10.1364/JOSA.73.000500
[7] DOI: 10.1007/BF02124666 · doi:10.1007/BF02124666
[8] DOI: 10.1364/JOSAA.18.002789 · doi:10.1364/JOSAA.18.002789
[9] DOI: 10.1007/s10291-003-0047-5 · doi:10.1007/s10291-003-0047-5
[10] Brunner F. K., Manuscr. Geod. 16 pp 205– (1991)
[11] Bassiri S., Manuscr. Geod. 18 pp 280– (1993)
[12] DOI: 10.1556/AGeod.37.2002.2-3.17 · doi:10.1556/AGeod.37.2002.2-3.17
[13] DOI: 10.1029/2003GL017639 · doi:10.1029/2003GL017639
[14] DOI: 10.1029/2005GL024342 · doi:10.1029/2005GL024342
[15] Hoque M. M., GPS Solutions (2007)
[16] Gu M., Manuscr. Geod. 15 pp 357– (1990)
[17] DOI: 10.1109/PROC.1982.12313 · doi:10.1109/PROC.1982.12313
[18] Tinin M. V., Proceedings of ISAP1904 pp 1105–
[19] Kim B. C., Proc. XXVIII General Assembly of The International Union of Radio Science (URSI)
[20] DOI: 10.1134/S0016793207020120 · doi:10.1134/S0016793207020120
[21] DOI: 10.1007/s00190-006-0099-8 · Zbl 1147.86011 · doi:10.1007/s00190-006-0099-8
[22] DOI: 10.1017/CBO9780511564321 · doi:10.1017/CBO9780511564321
[23] DOI: 10.1109/ISAPE.2006.353537 · doi:10.1109/ISAPE.2006.353537
[24] DOI: 10.1029/1999RS002259 · doi:10.1029/1999RS002259
[25] DOI: 10.1088/0741-3335/50/3/035010 · doi:10.1088/0741-3335/50/3/035010
[26] Abramowitz M., Handbook of Mathematical Functions (1972) · Zbl 0543.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.