Wang, Xingyuan; Gao, Xulong; Wang, Lulu Finite-time chaos synchronization of a new hyperchaotic Lorenz system. (English) Zbl 1267.93157 Int. J. Mod. Phys. B 27, No. 9, Article ID 1350033 (2013). Summary: This paper deals with the finite-time chaos synchronization of a new hyperchaotic Lorenz system. Based on the finite-time stability theory, a simple and robust controller is proposed to realize finite-time chaos synchronization for the hyperchaotic Lorenz system. Theoretical analysis proved that the scheme can ensure the error system globally finite-time stable. Numerical simulations are provided to show the effectiveness of the proposed schemes. Cited in 4 Documents MSC: 93D21 Adaptive or robust stabilization 93D30 Lyapunov and storage functions 34H10 Chaos control for problems involving ordinary differential equations 34D06 Synchronization of solutions to ordinary differential equations Keywords:hyperchaotic Lorenz systems; chaos synchronization; finite-time stable PDF BibTeX XML Cite \textit{X. Wang} et al., Int. J. Mod. Phys. B 27, No. 9, Article ID 1350033 (2013; Zbl 1267.93157) Full Text: DOI References: [1] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 [2] DOI: 10.1109/31.75404 [3] X. P. Guan, Chaotic Control and its Application on Secure Communication (National Defence Industry Press, Beijing, 2002) pp. 168–225. [4] X. Y. Wang, Chaos in the Complex Nonlinearity System (Electronics Industry Press, Bejjing, 2003) pp. 91–113. [5] Murali K., Chaos in Nonlinear Oscillators Controlling and Synchronization (1996) · Zbl 0868.58058 [6] Kapitaniak T., Controlling Chaos: Theoretical and Practical Methods in Nonlinear Dynamics (1996) · Zbl 0883.58021 [7] DOI: 10.1103/PhysRevLett.74.1740 [8] DOI: 10.1016/j.chaos.2004.12.007 · Zbl 1125.93470 [9] DOI: 10.1016/j.chaos.2006.03.051 · Zbl 1134.93405 [10] DOI: 10.1103/PhysRevE.54.4803 [11] DOI: 10.1137/0324047 · Zbl 0603.93005 [12] DOI: 10.1016/S0960-0779(02)00100-5 · Zbl 1038.37504 [13] DOI: 10.1016/j.cnsns.2008.08.013 · Zbl 1221.37225 [14] DOI: 10.1109/81.903194 · Zbl 1011.37059 [15] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 [16] DOI: 10.1016/j.physa.2008.02.020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.