×

Distributed \(\mathcal H_{\infty}\) state estimation with stochastic parameters and nonlinearities through sensor networks: the finite-horizon case. (English) Zbl 1267.93167

Summary: This paper deals with the distributed \(\mathcal H_{\infty}\) state estimation problem for a class of discrete time-varying nonlinear systems with both stochastic parameters and stochastic nonlinearities. The system measurements are collected through sensor networks with sensors distributed according to a given topology. The purpose of the addressed problem is to design a set of time-varying estimators such that the average estimation performance of the networked sensors is guaranteed over a given finite-horizon. Through available output measurements from not only the individual sensor but also its neighboring sensors, a necessary and sufficient condition is established to achieve the \(\mathcal H_{\infty}\) performance constraint, and then the estimator design scheme is proposed via a certain \(\mathcal H_{2}\)-type criterion. The desired estimator parameters can be obtained by solving coupled backward recursive Riccati Difference Equations (RDEs). A numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed estimator design approach.

MSC:

93E10 Estimation and detection in stochastic control theory
93B36 \(H^\infty\)-control
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Ahmad, A.; Gani, M.; Yang, F., Decentralized robust Kalman filtering for uncertain stochastic systems over heterogeneous sensor networks, Signal processing, 88, 8, 1919-1928, (2008) · Zbl 1151.94335
[2] Aitrami, M.; Chen, X.; Zhou, X., Discrete-time indefinite LQ control with state and control dependent noises, Journal of global optimization, 23, 3-4, 245-265, (2002) · Zbl 1035.49024
[3] Aliyu, M.D.S.; Boukas, E., Mixed \(\mathcal{H}_2 / \mathcal{H}_\infty\) nonlinear filtering, International journal of robust and nonlinear control, 19, 4, 394-417, (2009) · Zbl 1157.93520
[4] Basin, M.; Elvira-Ceja, S.; Sanchez, E., Mean-square \(\mathcal{H}_\infty\) filtering for stochastic systems: application to a 2DOF helicopter, Signal processing, 92, 3, 801-806, (2012)
[5] Basin, M.; Shi, P.; Calderon-Alvarez, D., Approximate finite-dimensional filtering for polynomial states over polynomial observations, International journal of control, 83, 4, 724-730, (2010) · Zbl 1209.93149
[6] Basin, M.; Shi, P.; Calderon-Alvarez, D., Central suboptimal \(\mathcal{H}_\infty\) filter design for linear time-varying systems with state and measurement delays, International journal of systems science, 41, 4, 411-421, (2010) · Zbl 1301.93157
[7] Basin, M.; Shi, P.; Calderon-Alvarez, D.; Wang, J., Central suboptimal \(\mathcal{H}_\infty\) filter design for linear time-varying systems with state or measurement delay, Circuits, systems, and signal processing, 28, 2, 305-330, (2009) · Zbl 1173.93011
[8] Bouhtouri, A.E.; Hinrichsen, D.; Pritchard, A., \(\mathcal{H}_\infty\)-type control for discrete-time stochastic systems, International journal of robust and nonlinear control, 9, 13, 923-948, (1999) · Zbl 0934.93022
[9] Caballero-Aguila, R.; Hermoso-Carazo, A.; Jimenez-Lopez, J.D.; Linares-Perez, J.; Nakamori, S., Signal estimation with multiple delayed sensors using covariance information, Digital signal processing, 20, 2, 528-540, (2010)
[10] Calafiore, G.C.; Abrate, F., Distributed linear estimation over sensor networks, International journal of control, 82, 5, 868-882, (2009) · Zbl 1165.93032
[11] Carli, R.; Chiuso, A.; Schenato, L.; Zampieri, S., Distributed Kalman filtering based on consensus strategies, IEEE journal on selected areas in communications, 26, 4, 622-633, (2008)
[12] Farahmand, S.; Roumeliotis, S.I.; Giannakis, G.B., Set-membership constrained particle filter: distributed adaptation for sensor networks, IEEE transactions on signal processing, 59, 9, 4122-4138, (2011) · Zbl 1392.94202
[13] Farina, M., Ferrari-Trecate, G., & Scattolini, R. (2009). Distributed moving horizon estimation for sensor networks. In Proc. 1st IFAC workshop estim. control netw. syst. (pp. 126-131). · Zbl 1244.93008
[14] Gao, H.; Lam, J.; Wang, C., Induced \(l_2\) and generalized \(\mathcal{H}_2\) filtering for systems with repeated scalar nonlinearities, IEEE transactions on signal processing, 53, 11, 4215-4226, (2005) · Zbl 1370.94125
[15] Gershon, E.; Shaked, U.; Berman, N., \(\mathcal{H}_\infty\) control and estimation of retarded state-multiplicative stochastic systems, IEEE transactions on automatic control, 52, 9, 1773-1779, (2007) · Zbl 1366.93701
[16] Gershon, E.; Shaked, U.; Yaesh, I., Control and estimation of state-multiplicative linear systems, (2005), Springer-Verlag London Limited London, UK · Zbl 1077.93016
[17] He, X.; Wang, Z.; Zhou, D., Robust \(\mathcal{H}_\infty\) filtering for networked systems with multiple state delays, International journal of control, 80, 8, 1217-1232, (2007) · Zbl 1133.93314
[18] Hou, T.; Zhang, W.; Ma, H., Finite horizon \(\mathcal{H}_2 / \mathcal{H}_\infty\) control for discrete-time stochastic systems with Markovian jumps and multiplicative noise, IEEE transactions on automatic control, 55, 5, 1185-1191, (2010) · Zbl 1368.93661
[19] Hung, Y.S.; Yang, F., Robust \(\mathcal{H}_\infty\) filtering with error variance constraints for discrete time-varying systems with uncertainty, Automatica, 39, 7, 1185-1194, (2003) · Zbl 1022.93046
[20] Jacobson, D., A general result in stochastic optimal control of nonlinear discrete-time systems with quadratic performance criteria, Journal of mathematical analysis and applications, 47, 1, 153-161, (1974) · Zbl 0281.93017
[21] Jafarizadeh, S.; Jamalipour, A., Fastest distributed consensus problem on fusion of two star sensor networks, IEEE sensors journal, 11, 10, 2494-2506, (2011)
[22] Karimi, H.R., Robust \(\mathcal{H}_\infty\) filter design for uncertain linear systems over network with network-induced delays and output quantization, Modeling, identification and control, 30, 1, 27-37, (2009)
[23] Li, J.; AlRegib, G., Rate-constrained distributed estimation in wireless sensor networks, IEEE transactions on signal processing, 55, 5, 1634-1643, (2007) · Zbl 1391.94021
[24] Liang, J.; Wang, Z.; Liu, X., Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements, IEEE transactions on neural networks, 22, 3, 66-86, (2011)
[25] Luo, Y.; Zhu, Y.; Luo, D.; Zhou, J.; Song, E.; Wang, D., Globally optimal multisensor distributed random parameter matrices Kalman filtering fusion with applications, Sensors, 8, 12, 8086-8103, (2008)
[26] Olfati-Saber, R. (2007). Distributed Kalman filtering for sensor networks. In Proc. 46th IEEE conf. decis. control. (pp. 1-7).
[27] Ribeiro, A.; Giannakis, G.B., Bandwidth-constrained distributed estimation for wireless sensor networks-part part I: Gaussian case, IEEE transactions on signal processing, 54, 3, 1131-1143, (2006) · Zbl 1373.94687
[28] Ribeiro, A.; Giannakis, G.B., Bandwidth-constrained distributed estimation for wireless sensor networks-part II: unknown probability density function, IEEE transactions on signal processing, 54, 7, 2784-2796, (2006) · Zbl 1373.94688
[29] Ribeiro, A.; Schizas, I.D.; Roumeliotis, S.I.; Giannakis, G.B., Kalman filtering in wireless sensor networks, IEEE control systems magazine, 30, 2, 66-86, (2010)
[30] Shaked, U.; Berman, N., \(\mathcal{H}_\infty\) nonlinear filtering of discrete-time processes, IEEE transactions on signal processing, 43, 9, 2205-2209, (1995)
[31] Shaked, U.; Suplin, V., A new bounded real lemma representation for the continuous-time case, IEEE transactions on automatic control, 46, 9, 1420-1426, (2001) · Zbl 1006.93016
[32] Shen, B.; Wang, Z.; Hung, Y.S., Distributed \(\mathcal{H}_\infty\)-consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case, Automatica, 46, 10, 1682-1688, (2010) · Zbl 1204.93122
[33] Shen, B.; Wang, Z.; Shu, H.; Wei, G., Robust \(\mathcal{H}_\infty\) finite-horizon filtering with randomly occurred nonlinearities and quantization effects, Automatica, 46, 11, 1743-1751, (2010) · Zbl 1218.93103
[34] Speranzon, A.; Fischione, C.; Johansson, K.H.; Sangiovanni-Vincentelli, A., A distributed minimum variance estimator for sensor networks, IEEE journal on selected areas in communications, 26, 4, 609-621, (2008)
[35] Teng, J.; Snoussi, H.; Richard, C., Collaborative multi-target tracking in wireless sensor networks, International journal of systems science, 42, 9, 1427-1443, (2011) · Zbl 1241.93052
[36] Wang, T.; Chang, L.; Chen, P., A collaborative sensor-fault detection scheme for robust distributed estimation in sensor networks, IEEE transactions on communications, 57, 10, 3045-3058, (2009)
[37] Wu, L.; Ho, D.W.C., Reduced-order \(\mathcal{L}_2 - \mathcal{L}_\infty\) filtering of switched nonlinear stochastic systems, IET control theory & applications, 3, 5, 493-508, (2009)
[38] Yang, W.; Wang, X.; Shi, H., Optimal consensus-based distributed estimation with intermittent communication, International journal of systems science, 42, 9, 1521-1529, (2011) · Zbl 1230.93088
[39] Yaz, E.; Skelton, R.E., Parametrization of all linear compensators for discrete-time stochastic parameter systems, Automatica, 30, 6, 945-955, (1994) · Zbl 0799.93039
[40] Yaz, E.; Yaz, Y., State estimation of uncertain nonlinear stochastic systems with general criteria, Applied mathematics letters, 14, 5, 605-610, (2001) · Zbl 0976.93078
[41] Yu, W.; Chen, G.; Wang, Z.; Yang, W., Distributed consensus filtering in sensor networks, IEEE transactions on systems, man and cybernetics, part B (cybernetics), 39, 6, 1568-1577, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.