×

zbMATH — the first resource for mathematics

Cyclic \(q\)-MZSV sum. (English) Zbl 1268.11119
Summary: We present a family of identities ’cyclic sum formula’ and ’sum formula’ for a version of multiple \(q\)-zeta star values. We also discuss a problem of \(q\)-generalization of shuffle products.

MSC:
11M32 Multiple Dirichlet series and zeta functions and multizeta values
11G55 Polylogarithms and relations with \(K\)-theory
16W25 Derivations, actions of Lie algebras
33D70 Other basic hypergeometric functions and integrals in several variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bradley, D.M., Multiple q-zeta values, J. algebra, 283, 2, 752-798, (2005) · Zbl 1114.11075
[2] Bradley, D.M., A q-analog of eulerʼs decomposition formula for the double zeta function, Int. J. math. math. sci., 2005, 21, 3453-3458, (2005) · Zbl 1090.11054
[3] Euler, L., Meditationes circa singulare serierum genus, (), 20, 217-267, (1775), reprinted
[4] Gangl, H.; Kaneko, M.; Zagier, D., Double zeta values and modular forms, (), 71-106 · Zbl 1122.11057
[5] Gasper, G.; Rahman, M., Basic hypergeometric series, Encyclopedia math. appl., vol. 96, (2004), Cambridge Univ. Press Cambridge · Zbl 1129.33005
[6] Granville, A., A decomposition of riemannʼs zeta-function, (), 95-101 · Zbl 0907.11024
[7] Hoffman, M.E., Multiple harmonic series, Pacific J. math., 152, 2, 275-290, (1992) · Zbl 0763.11037
[8] Hoffman, M.E.; Ohno, Y., Relations of multiple zeta values and their algebraic expression, J. algebra, 262, 2, 332-347, (2003) · Zbl 1139.11322
[9] Hsu, L.C., Note on a pair of combinatorial reciprocal formulas, Math. student, 22, 2, 175-178, (1954) · Zbl 0065.00601
[10] Ihara, K.; Kajikawa, J.; Ohno, Y.; Okuda, J., Multiple zeta values vs. multiple zeta-star values, J. algebra, 332, 1, 187-208, (2011) · Zbl 1266.11093
[11] Ihara, K.; Kaneko, M.; Zagier, D., Derivation and double shuffle relations for multiple zeta values, Compos. math., 142, 2, 307-338, (2006) · Zbl 1186.11053
[12] Krattenthaler, C.; Srivastava, H.M., Summations for basic hypergeometric series involving a q-analogue of the digamma function, Comput. math. appl., 32, 3, 73-91, (1996) · Zbl 0855.33012
[13] Ohno, Y.; Okuda, J., On the sum formula for the q-analogue of non-strict multiple zeta values, Proc. amer. math. soc., 135, 3029-3037, (2007) · Zbl 1130.11051
[14] Ohno, Y.; Wakabayashi, N., Cyclic sum of multiple zeta values, Acta arith., 123, 3, 289-295, (2006) · Zbl 1156.11038
[15] Ohno, Y.; Zagier, D., Multiple zeta values of fixed weight, depth, and height, Indag. math. (N.S.), 12, 4, 483-487, (2001) · Zbl 1031.11053
[16] Ohno, Y.; Zudilin, W., Zeta stars, Commun. number theory phys., 2, 2, 325-347, (2008) · Zbl 1228.11132
[17] Okuda, J.; Takeyama, Y., On relations for the multiple q-zeta values, Ramanujan J., 14, 3, 379-387, (2007) · Zbl 1211.11099
[18] Pupyrev, Yu.A., On the linear and algebraic independence of q-zeta values, Mat. zametki, Math. notes, 78, 3-4, 563-568, (2005), English transl. in: · Zbl 1160.11338
[19] Ramanujan, S., On certain arithmetical functions, Trans. Cambridge philos. soc., 22, 9, 159-184, (1916)
[20] Riordan, J., An introduction to combinatorial analysis, (1958), Princeton University Press Princeton · Zbl 0078.00805
[21] D. Zagier, Multiple zeta values, unpublished manuscript, Bonn, 1995.
[22] Zudilin, W., Algebraic relations for multiple zeta values, Uspekhi mat. nauk, Russian math. surveys, 58, 1, 1-29, (2003), English transl. in: · Zbl 1171.11323
[23] Zudilin, W., Computing powers of two generalizations of the logarithm, Sémin. lothar. combin., 53, (2005), Article B53c, 6 pp · Zbl 1088.11015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.