zbMATH — the first resource for mathematics

The arithmetic of certain del Pezzo surfaces and \(K3\) surfaces. (English. French summary) Zbl 1268.14020
It is a classical result of Hasse that smooth quartic hypersurfaces always satisfy the Hasse principle. A degree 4 del Pezzo surface is the smooth intersection of two quadratic hypersurfaces of dimension 4. The author constructs degree 4 del Pezzo surfaces for which the Hasse principle fails because of the Brauer-Manin obstruction. They give explicit equations for the two quadric hypersurfaces defining the surface. One of the surfaces provided has been studied by B. J. Birch and H. P. F. Swinnerton-Dyer [J. Reine Angew. Math. 274–275, 164–174 (1975; Zbl 0326.14007)]. The author then uses the degree 4 del Pezzo surfaces to construct a family of \(K3\) surfaces violating the Hasse principle also. These surfaces are double covers of the del Pezzo branched over a smooth conic.

14G05 Rational points
14J28 \(K3\) surfaces and Enriques surfaces
14J26 Rational and ruled surfaces
11G35 Varieties over global fields
Full Text: DOI
[1] B.J. Birch and H.P.F. Swinnerton-Dyer, The Hasse problem for rational surfaces. J. Reine Angew. Math. 274/275 (1975), 164-174, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III. · Zbl 0326.14007
[2] V. Bouniakowsky, Nouveaux théorèms à la distinction des nombres premiers et à la décomposition des entiers en facteurs. Sc. Math. Phys. 6 (1857), pp. 305-329.
[3] H. Cohen, Number Theory, Volume I: Tools and Diophantine equations. Graduate Texts in Math. 239, Springer-Verlag, 2007.
[4] J-L. Colliot-Thélène and B. Poonen, Algebraic families of nonzero elements of Shafarevich-Tate groups. J. Amer. Math. Soc. 13 (2000), no. 1, 83-99. · Zbl 0951.11022
[5] P. Corn, Del Pezzo surfaces and the Brauer-Manin obstruction. Ph.D. thesis, University of California, Berkeley, 2005. · Zbl 1133.14022
[6] D. F. Coray and C. Manoil, On large Picard groups and the Hasse principle for curves and \(K3\) surfaces. Acta. Arith. 76 (1996), pp. 165-189. · Zbl 0877.14005
[7] W. Hürlimann, Brauer group and Diophantine geometry: A cohomological approach, in: Brauer Groups in Ring Theory and Algebraic Geometry, Wilrijk, 1981. In: Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 43-65. · Zbl 0487.14006
[8] V.A. Iskovskikh, A counterexample to the Hasse principle for systems of two quadratic forms in five variables. Mat. Zametki 10 (1971), 253-257. · Zbl 0221.10028
[9] C.E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins. Thesis, University of Uppasala, 1940. · Zbl 0025.24802
[10] Yu.I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne. In Actes du Congrès International des Mathématiciens, (Nice, 1970), pp. 401-411. · Zbl 0239.14010
[11] B. Poonen, An explicit family of genus-one curves violating the Hasse principle. J. Théor. Nombres Bordeaux 13 (2001), no. 1, 263-274. · Zbl 1046.11038
[12] B. Poonen, Existence of rational points on smooth projective varieties. J. Eur. Math. Soc. 11 (2009), no. 3, pp. 529-543. · Zbl 1183.14032
[13] H. Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen. J. Reine Angew. Math. 184 (1942), pp. 12-18. · Zbl 0026.29701
[14] M. Reid, The complete intersection of two or more quadrics. Ph.D thesis, University of Cambridge, 1972.
[15] A.N. Skorobogatov, Torsors and rational points, CTM 144. Cambridge Univ. Press, 2001.
[16] H.P.F. Swinnerton-Dyer, Brauer-Manin obstructions on some Del Pezzo surfaces. Math. Proc. Cam. Phil. Soc. 125 (1999), pp. 193-198. · Zbl 0951.14010
[17] Oliver Wittenberg, Intersections de deux quadriques et pinceaux de courbes de genre \(1\). Lecture Notes in Mathematics. 1901, Springer, Berlin, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.