Generalized Whittaker functions on \(\text{GSp}(2, \mathbb R)\) associated with indefinite quadratic forms. (English) Zbl 1268.22018

Summary: We study the generalized Whittaker models for \(G = \text{GSp}(2, \mathbb R)\) associated with indefinite binary quadratic forms when they arise from two standard representations of \(G\): (i) a generalized principal series representation induced from the non-Siegel maximal parabolic subgroup and (ii) a (limit of) large discrete series representation. We prove the uniqueness of such models with moderate growth property. Moreover we express the values of the corresponding generalized Whittaker functions on a one-parameter subgroup of \(G\) in terms of the Meijer \(G\)-functions.


22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E30 Analysis on real and complex Lie groups
Full Text: DOI


[1] A. N. Andrianov, Dirichlet series with Euler product in the theory of Siegel modular forms of genus two, Trudy Mat. Inst. Steklov., 112 (1971), 73-94. · Zbl 0224.10027
[2] A. N. Andrianov and V. Kalinin, Analytic properties of standard zeta-functions of Siegel modular forms, Mat. Sb. (N.S.), 106 (1978), 323-339. · Zbl 0389.10023
[3] E. W. Barnes, The Asymptotic Expansion of Integral Functions Defined by Generalized Hypergeometric Series, Proc. London Math. Soc., 5 (1907), 59-116. · JFM 38.0449.01
[4] A. Borel, Automorphic forms on \(SL _ 2(\R)\), Cambridge Tracts in Math., 130 , Cambridge University Press, Cambridge, 1997.
[5] D. Bump, Automorphic forms and representations, Cambridge University Press, 1997. · Zbl 0911.11022
[6] D. Bump, S. Friedberg and M. Furusawa, Explicit formulas for the Waldspurger and Bessel models, Israel J. Math., 102 (1997), 125-177. · Zbl 1073.11513
[7] C. Casselman and J. A. Shalika, The unramified principal series of \(p\)-adic groups, II, The Whittaker function, Compositio Math., 41 (1980), 207-231. · Zbl 0472.22005
[8] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, I , Based on notes left by Harry Bateman, McGraw-Hill Book Company Inc., New York-Toronto-London, 1953. · Zbl 0052.29502
[9] M. Furusawa, On \(L\)-functions for \(GSp(4)\times GL(2)\) and their special values, J. Reine Angew. Math., 438 (1993), 187-218. · Zbl 0770.11025
[10] B. H. Gross and D. Prasad, On irreducible representations of \(SO_{2n+1}\times SO_{2m}\), Canad. J. Math., 46 (1994), 930-950. · Zbl 0829.22031
[11] Harish-Chandra, Discrete series for semisimple Lie groups, II, Acta Math., 166 (1966), 1-111. · Zbl 0199.20102
[12] M. Harris, Occult period invariants and critical values of the degree four \(L\)-function of \(GSp(4)\), In: Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp.,331-354. · Zbl 1173.11329
[13] T. Ishii, Siegel-Whittaker functions on \(Sp(2,\R)\) for principal series representations, J. Math. Sci. Univ. Tokyo, 9 (2002), 303-346. · Zbl 1006.22014
[14] T. Ishii and T. Moriyama, Spinor \(L\)-functions for generic cusp forms on \(GSp(2)\) belonging to principal series representations, Trans. Amer. Math. Soc., 360 (2008), 5683-5709. · Zbl 1162.11027
[15] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms, II, Amer. J. Math., 103 (1981), 777-815. · Zbl 0491.10020
[16] A. W. Knapp, Representation theory of semisimple groups, An overview based on examples, Princeton Mathematical Series, 36 , Princeton University Press, Princeton NJ, 1986. · Zbl 0604.22001
[17] S. Kudla, S. Rallis and D. Soudry, On the degree 5 \(L\)-function for \(Sp(2)\), Invent. Math., 107 (1992), 483-541. · Zbl 0776.11028
[18] F. Lemma, Régulateurs supérieurs, périodes et valeurs spéciales de la fonction \(L\) de degré 4 de \(GSp(4)\), (French, English, French summary) [Higher regulators, periods and special values of the degree-4 \(L\)-function of \(GSp(4)\)], C. R. Math. Acad. Sci. Paris, 346 (2008), 1023-1028. · Zbl 1168.11017
[19] J. S. Li, Nonexistence of singular cusp forms, Compositio Math., 83 (1992), 43-51. · Zbl 0768.11017
[20] H. Maass, Siegel’s modular forms and Dirichlet series, Lecture Notes in Math., 216 , Springer-Verlag, 1976.
[21] C. S. Meijer, On the \(G\)-functions I-II, Indag. Math., 8 (1946), 124-134, 213-225. · Zbl 0063.03873
[22] T. Miyazaki, The generalized Whittaker functions for \(Sp(2,\R)\) and the gamma factor of the Andrianov \(L\)-functions, J. Math. Sci. Univ. Tokyo., 7 (2000), 241-295. · Zbl 1032.22005
[23] T. Miyazaki, Nilpotent orbits and Whittaker functions for derived functor modules of \(Sp(2,\R)\), Canad. J. Math., 54 (2002), 769-794. · Zbl 1031.22005
[24] T. Moriyama, Entireness of the spinor \(L\)-functions for certain generic cusp forms on \(GSp(2)\), Amer. J. Math., 126 (2004), 899-920. · Zbl 1058.11033
[25] S. Niwa, On generalized Whittaker functions on Siegel’s upper half space of degree 2, Nagoya Math. J., 121 (1991), 171-184. · Zbl 0724.11027
[26] M. E. Novodvorsky, Automorphic \(L\)-functions for symplectic group \(GSp(4)\), In: Automorphic Forms, Representations and \(L\)-Functions, (Eds. A. Borel and W. Classelman), Proc. Sympos. Pure Math., 33 , Amer. Math. Soc., Providence RI, 1979, pp.,87-95. · Zbl 0408.12013
[27] M. E. Novodvorsky and I. I. Piatetski-Shapiro, Generalized Bessel models for a symplectic group of rank 2, Math. USSR-Sb., 19 (1973), 243-255. · Zbl 0281.22019
[28] I. I. Piatetski-Shapiro, \(L\)-functions for \(GSp _ 4\), Olga Taussky-Todd: in memoriam, Pacific J. Math., Special Issue (1997), 259-275.
[29] I. I. Piatetski-Shapiro and S. Rallis, A new way to get an Euler product, J. Reine Angew. Math., 392 (1988), 110-124. · Zbl 0651.10021
[30] A. Pitale and R. Schmidt, Bessel models for lowest weight representations of \(GSp(4,R)\), Int. Math. Res. Not., (2009), 1159-1212. · Zbl 1244.11055
[31] D. Prasad and R. Takloo-Bighash, Bessel models for \(GSp(4)\), J. Reine Angew. Math., 655 (2011), 189-243. · Zbl 1228.11070
[32] F. Rodier, Modèles pour les représentations du groupe \(Sp(4,k)\) où \(k\) est un corps local, [Models for the representations of \(Sp(4,k)\) where \(k\) is a local field], Reductive groups and automorphic forms, I (Paris, 1976/1977), Publ. Math. Univ. Paris VII, 1 , Univ. Paris VII, Paris, 1978, pp.,123-145.
[33] T. Sugano, On holomorphic cusp forms on quaternion unitary groups of degree 2, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1985), 521-568. · Zbl 0559.10020
[34] R. Takloo-Bighash, Spinor \(L\)-functions, theta correspondence, and Bessel coefficients, with an appendix by Philippe Michel, Forum Math., 19 (2007), 487-554. · Zbl 1225.11062
[35] N. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, In: Lie group representations, I, Lecture Notes in Math., 1024 , Springer-Verlag, 1983, pp.,287-369. · Zbl 0553.22005
[36] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Appl. Math., XIV , Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. · Zbl 0169.10903
[37] H. Yamashita, Multiplicity one theorems for generalized Gel’fand-Graev representations of semisimple Lie groups and Whittaker models for the discrete series, In: Representations of Lie Groups, Kyoto, Hiroshima, 1986, (eds. K. Okamoto and T. Oshima), Adv. Stud. Pure Math., 14 , Academic Press, Boston, MA, 1988, pp.,31-121. · Zbl 0759.22018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.