zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Starlikeness of general integral operator for meromorphic multivalent functions. (English) Zbl 1268.30019
Summary: We introduce a new integral operator $$\cal I^p_{\gamma, \delta}(f_1, \dots, f_n)$$ for meromorphic multivalent functions. The starlikeness condition of this integral operator is determined. Several special cases are also discussed in the form of corollaries.
MSC:
30C45Special classes of univalent and multivalent functions
WorldCat.org
Full Text: DOI
References:
[1] B. A. Frasin, “Order of convexity and univalency of general integral operator,” Journal of the Franklin Institute, vol. 348, no. 6, pp. 1013-1019, 2011. · Zbl 1220.30021 · doi:10.1016/j.jfranklin.2011.03.006
[2] S. Bulut and P. Goswami, “Starlikeness properties of general integral operator for meromorphic univalent functions,” Southeast Asian Bulletin of Mathematics, vol. 37, 2013. · Zbl 1299.30019
[3] A. Mohammed and M. Darus, “The order of starlikeness of new p-valent meromorphic functions,” International Journal of Mathematical Analysis, vol. 6, no. 25-28, pp. 1329-1340, 2012. · Zbl 1263.30007
[4] A. Mohammed and M. Darus, “A new integral operator for meromorphic functions,” Acta Universitatis Apulensis. Mathematics. Informatics, no. 24, pp. 231-238, 2010. · Zbl 1224.30062 · eudml:230102
[5] A. Mohammed and M. Darus, “New criteria for meromorphic functions,” International Journal of Applied Mathematics & Statistics, vol. 33, no. 3, 2013. · Zbl 1289.30084
[6] Y. Sun, W.-P. Kuang, and Z.-G. Wang, “On meromorphic starlike functions of reciprocal order \alpha ,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 35, no. 2, pp. 469-477, 2012. · Zbl 1263.30009
[7] Z.-G. Wang, Z.-H. Liu, and A. Catas, “On neighborhoods and partial sums of certain meromorphic multivalent functions,” Applied Mathematics Letters, vol. 24, no. 6, pp. 864-868, 2011. · Zbl 1211.30034 · doi:10.1016/j.aml.2010.12.033
[8] Z.-G. Wang, Z.-H. Liu, and R.-G. Xiang, “Some criteria for meromorphic multivalent starlike functions,” Applied Mathematics and Computation, vol. 218, no. 3, pp. 1107-1111, 2011. · Zbl 1225.30018 · doi:10.1016/j.amc.2011.03.079
[9] Z.-G. Wang, Y. Sun, and N. Xu, “Some properties of certain meromorphic close-to-convex functions,” Applied Mathematics Letters, vol. 25, no. 3, pp. 454-460, 2012. · Zbl 1252.30015 · doi:10.1016/j.aml.2011.09.035
[10] Z.-G. Wang, Y. Sun, and Z.-H. Zhang, “Certain classes of meromorphic multivalent functions,” Computers and Mathematics with Applications, vol. 58, no. 7, pp. 1408-1417, 2009. · Zbl 1189.30045 · doi:10.1016/j.camwa.2009.07.020
[11] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, vol. 225 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2000. · Zbl 0954.34003
[12] A. Mohammed and M. Darus, “Starlikeness properties of a new integral operator for meromorphic functions,” Journal of Applied Mathematics, vol. 2011, Article ID 804150, 8 pages, 2011. · Zbl 1223.30005 · doi:10.1155/2011/804150