×

Existence of solutions of abstract fractional integrodifferential equations of Sobolev type. (English) Zbl 1268.34151

Summary: This paper deals with the study of existence of solutions of nonlinear fractional integrodifferential equations of Sobolev type with nonlocal condition in Banach spaces. The results are obtained by using resolvent operators, fractional calculus and fixed point technique. An example is provided to illustrate the theory.

MSC:

34K37 Functional-differential equations with fractional derivatives
34A08 Fractional ordinary differential equations
34K30 Functional-differential equations in abstract spaces
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific: World Scientific Singapore · Zbl 0998.26002
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[3] Metzler, F.; Schick, W.; Kilian, H. G.; Nonnenmacher, T. F., Relaxation in filled polymers: A fractional calculus approach, Journal of Chemical Physics, 103, 7180-7186 (1995)
[4] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1-77 (2000) · Zbl 0984.82032
[5] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37, R161-R208 (2004) · Zbl 1075.82018
[6] Gafiychuk, V.; Datsko, B.; Meleshko, V., Mathematical modeling of time fractional reaction-diffusion systems, Journal of Computational and Applied Mathematics, 220, 215-225 (2008) · Zbl 1152.45008
[7] Barenblat, G.; Zheltor, J.; Kochiva, I., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, Journal of Applied Mathematics and Mechanics, 24, 1286-1303 (1960) · Zbl 0104.21702
[8] Brill, H., A semilinear Sobolev evolution equation in Banach space, Journal of Differential Equations, 24, 412-425 (1977) · Zbl 0346.34046
[9] Showalter, R. E., Existence and representation theorem for a semilinear Sobolev equation in Banach space, SIAM Journal on Mathematical Analysis, 3, 527-543 (1972) · Zbl 0262.34047
[10] Balachandran, K.; Park, D. G.; Kwun, Y. C., Nonlinear integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces, Communications of the Korean Mathematical Society, 14, 223-231 (1999) · Zbl 0972.45009
[11] Balachandran, K.; Park, J. Y.; Chandrasekaran, M., Nonlocal Cauchy problem for delay integrodifferential equations of Sobolev type in Banach spaces, Applied Mathematics Letters, 15, 845-854 (2002) · Zbl 1028.45006
[12] Balachandran, K.; Uchiyama, K., Existence of solutions of nonlinear integrodifferential equations of Sobolev type with nonlocal condition in Banach spaces, Proceedings of the Indian Academy of Science, 110, 225-232 (2000) · Zbl 0957.34058
[13] Byszewski, L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, Journal of Mathematical Analysis and Applications, 162, 494-505 (1991) · Zbl 0748.34040
[14] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109, 973-1033 (2010) · Zbl 1198.26004
[15] Balachandran, K.; Trujillo, J. J., The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 72, 4587-4593 (2010) · Zbl 1196.34007
[16] Balachandran, K.; Kiruthika, S., Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electronic Journal of Qualitative Theory of Differential Equations, 4, 1-12 (2010) · Zbl 1201.34091
[17] Balachandran, K.; Kiruthika, S.; Trujillo, J. J., Existence results for fractional impulsive integrodifferential equations in Banach spaces, Communications in Nonlinear Science and Numerical Simulation, 16, 1970-1977 (2011) · Zbl 1221.34215
[18] Li, M.; Chen, C.; Li, F. B., On fractional powers of generators of fractional resolvent families, Journal of Functional Analysis, 259, 2702-2726 (2010) · Zbl 1203.47021
[19] Hernández, E.; O’Regan, D.; Balachandran, K., On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Analysis: Theory, Methods & Applications, 73, 3462-3471 (2010) · Zbl 1229.34004
[20] Rivero, M.; Trujillo, J. J.; Vázquez, L.; Velasco, M. P., Fractional dynamics of populations, Applied Mathematics and Computation, 218, 1089-1095 (2011) · Zbl 1226.92060
[21] He, J. H., Some applications of nonlinear fractional differential equations and their approximations, Bulletin of Science, Technology & Society, 15, 86-90 (1999)
[22] Balachandran, K.; Kiruthika, S.; Trujillo, J. J., On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces, Computers and Mathematics with Applications, 62, 1157-1165 (2011) · Zbl 1228.34014
[23] Balachandran, K.; Kiruthika, S., Existence results for fractional integrodifferential equations with nonlocal condition via resolvent operators, Computers and Mathematics with Applications, 62, 1350-1358 (2011) · Zbl 1228.34013
[24] Caputo, M., Linear models of dissipation whose \(Q\) is almost frequency independent—II, Geophysical Journal of the Royal Astronomical Society, 13, 529-539 (1967)
[25] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York · Zbl 0789.26002
[26] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[27] Prüss, J., Evolutionary Integral Equations and Applications (1993), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0793.45014
[28] Smart, D. R., Fixed Point Theorems (1980), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0427.47036
[29] Lightboure, J. H.; Rankin, S. M., A partial functional differential equation of Sobolev type, Journal of Mathematical Analysis and Applications, 93, 328-337 (1983) · Zbl 0519.35074
[30] E.G. Bajlekova, Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven University of Technology, 2001.; E.G. Bajlekova, Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven University of Technology, 2001. · Zbl 0989.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.