×

Existence of orbits with non-zero torsion for certain types of surface diffeomorphisms. (English) Zbl 1268.37064

Summary: The present paper concerns the dynamics of surface diffeomorphisms. Given a diffeomorphism \(f\) of a surface \(S\), the torsion of the orbit of a point \(z\in S\) is, roughly speaking, the average speed of rotation of the tangent vectors under the action of the derivative of \(f\), along the orbit of \(z\) under \(f\). The purpose of the paper is to identify some situations where there exist measures and orbits with non-zero torsion. We prove that every area preserving diffeomorphism of the disc which coincides with the identity near the boundary has an orbit with non-zero torsion. We also prove that a diffeomorphism of the torus \({\mathbb T}^2\), isotopic to the identity, whose rotation set has non-empty interior, has an orbit with non-zero torsion.

MSC:

37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37E45 Rotation numbers and vectors

References:

[1] S. B. Angenent, The periodic orbits of an area preserving twist map, Commun. Math. Phys., 115 (1988), 353-374. · Zbl 0665.58034 · doi:10.1007/BF01218016
[2] S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions, I. Exact results for the ground-states, Phys. D, 8 (1983), 381-422. · Zbl 1237.37059 · doi:10.1016/0167-2789(83)90233-6
[3] F. Béguin, S. Firmo, P. Le Calvez and T. Miernowski, Des points fixes communs pour des difféomorphismes de \({\mathbb S}^2\) qui commutent et préservent une mesure de probabilité, (In preparation).
[4] S. Crovisier, Langues d’Arnol’d généralisées des applications de l’anneau déviant la verticale, C. R. Math. Acad. Sci., Paris, 334 (2002), 47-52. · Zbl 1015.37033 · doi:10.1016/S1631-073X(02)02220-3
[5] S. Crovisier, Ensembles de torsion nulle des applications déviant la verticale, Bull. Soc. Math. France, 131 (2003), 23-39. · Zbl 1062.37032
[6] H. Enrich, N. Guelman, A. Larcanché and I. Liousse, Diffeomorphisms having rotation sets with non-empty interior, Nonlinearity, 22 (2009), 1899-1907. · Zbl 1171.37319 · doi:10.1088/0951-7715/22/8/007
[7] A. Fathi, F. Laudenbach and V. Poenaru, Travaux de Thurston sur les surfaces, Astérisque, 66 -67 (1971), 1-286.
[8] J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc., 311 (1989), 107-115. · Zbl 0664.58028 · doi:10.2307/2001018
[9] J. Franks and M. Handel, Distortion elements in group actions on surfaces, Duke Math. J., 131 (2006), 441-468. · Zbl 1088.37009 · doi:10.1215/S0012-7094-06-13132-0
[10] D. Fried, The geometry of cross sections to flows, Topology, 21 (1982), 353-371. · Zbl 0594.58041 · doi:10.1016/0040-9383(82)90017-9
[11] J. M. Gambaudo and É. Ghys., Enlacements asymptotiques, J. Topology., 36 (1997), 1355-1379. · Zbl 0913.58003 · doi:10.1016/S0040-9383(97)00001-3
[12] M. Handel, Global shadowing of pseudo-Anosov homeomorphisms, Ergodic Theory Dynam. Systems, 5 (1985), 373-377. · Zbl 0576.58025 · doi:10.1017/S0143385700003011
[13] T. Inaba and H. Nakayama, Invariant fiber measures of angular flows and the Ruelle invariant, J. Math. Soc. Japan, 56 (2004), 17-29. · Zbl 1049.37015 · doi:10.2969/jmsj/1191418693
[14] O. Jaulent, Existence d’un feuilletage positivement transverse à un homéomorphisme de surface, (In preparation).
[15] H. Kneser, Die Deformationssätze der einfach zusammenhängenden Flächen, Math. Z, 25 (1926), 362-372. · JFM 52.0573.01 · doi:10.1007/BF01283844
[16] P. Le Calvez, Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math. Inst. Hautes Études Sci., 102 (2005), 1-98. · Zbl 1152.37015 · doi:10.1007/s10240-005-0034-1
[17] F. Le Roux, Étude topologique de l’espace des homéomorphismes de Brouwer, I, Topology, 40 (2001), 1051-1087. · Zbl 1168.37315 · doi:10.1016/S0040-9383(00)00024-0
[18] J. L. libre and R. S. Mackay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynam. Systems, 11 (1991), 115-128. · doi:10.1017/S0143385700006040
[19] J. N. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, 21 (1982), 457-467. · Zbl 0506.58032 · doi:10.1016/0040-9383(82)90023-4
[20] J. N. Mather, Amount of rotation about a point and the Morse Index*, Commun. Math. Phys., 94 (1984), 141-153. · Zbl 0558.58010 · doi:10.1007/BF01209299
[21] S. Matsumoto and H. Nakayama, On the Ruelle invariants for diffeomorphisms of the two torus, Ergodic Theory Dynam. Systems, 22 (2002), 1263-1267. · Zbl 1015.37034 · doi:10.1017/S0143385702000597
[22] M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori, J. London. Math Soc. (2), 40 (1989), 490-506. · Zbl 0663.58022 · doi:10.1112/jlms/s2-40.3.490
[23] D. Ruelle, Rotation numbers for diffeomorphisms and flows, Ann. Inst. H. Poincaré Phys. Théor., 42 (1985), 109-115. · Zbl 0556.58026
[24] C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685-710. · Zbl 0735.58019 · doi:10.1007/BF01444643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.