Ellipsoid embeddings and symplectic packing stability. (English) Zbl 1268.53092

Summary: We prove packing stability for rational symplectic manifolds. This will rely on a general symplectic embedding result for ellipsoids which assumes only that there is no volume obstruction and that the domain is sufficiently thin relative to the target. We also obtain easily computable bounds for the “embedded contact homology” (ECH) capacities which are sufficient to imply the existence of some symplectic volume filling embeddings in dimension 4.


53D35 Global theory of symplectic and contact manifolds
57R17 Symplectic and contact topology in high or arbitrary dimension
Full Text: DOI arXiv


[1] doi:10.2140/gt.2011.15.2091 · Zbl 1239.53107 · doi:10.2140/gt.2011.15.2091
[3] doi:10.1007/s002220050306 · Zbl 0930.53052 · doi:10.1007/s002220050306
[5] doi:10.1515/9783110199697 · doi:10.1515/9783110199697
[7] doi:10.4007/annals.2012.175.3.5 · Zbl 1254.53111 · doi:10.4007/annals.2012.175.3.5
[8] doi:10.1007/BF01231766 · Zbl 0833.53028 · doi:10.1007/BF01231766
[10] doi:10.1112/jtopol/jtn031 · Zbl 1166.53051 · doi:10.1112/jtopol/jtn031
[11] doi:10.1016/0040-9383(91)90021-U · Zbl 0731.53035 · doi:10.1016/0040-9383(91)90021-U
[13] doi:10.1007/BF01388806 · Zbl 0592.53025 · doi:10.1007/BF01388806
[16] doi:10.1007/PL00001678 · Zbl 1025.57032 · doi:10.1007/PL00001678
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.