×

Successive matrix squaring algorithm for computing the generalized inverse \(A^{(2)}_{T, S}\). (English) Zbl 1268.65056

Summary: We investigate successive matrix squaring algorithms for computing the generalized inverse \(A^{(2)}_{T, S}\) of a given matrix \(A \in \mathbb{C}^{m \times n}\).

MSC:

65F20 Numerical solutions to overdetermined systems, pseudoinverses
15A09 Theory of matrix inversion and generalized inverses
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Theory and Applications, vol. 15 of CMS Books in Mathematics, Springer, New York, NY, USA, 2nd edition, 2003. · Zbl 1026.15004
[2] A. J. Getson and F. C. Hsuan, 2-Inverses and Their Statistical Application, vol. 47 of Lecture Notes in Statistics, Springer, New York, NY, USA, 1988. · Zbl 0671.62003 · doi:10.1007/978-1-4612-3930-7
[3] B. Codenotti, M. Leoncini, and G. Resta, “Repeated matrix squaring for the parallel solution of linear systems,” in PARLE ’92 Parallel Architectures and Languages Europe, vol. 605 of Lecture Notes in Computer Science, pp. 725-732, Springer, Berlin, Germany, 1992. · doi:10.1007/3-540-55599-4_120
[4] Y. Wei, “Successive matrix squaring algorithm for computing the Drazin inverse,” Applied Mathematics and Computation, vol. 108, no. 2-3, pp. 67-75, 2000. · Zbl 1022.65043 · doi:10.1016/S0096-3003(98)10118-2
[5] Y. Wei, H. Wu, and J. Wei, “Successive matrix squaring algorithm for parallel computing the weighted generalized inverse AM,N+,” Applied Mathematics and Computation, vol. 116, no. 3, pp. 289-296, 2000. · Zbl 1023.65031 · doi:10.1016/S0096-3003(99)00151-4
[6] P. S. Stanimirović and D. S. Cvetković-Ilić, “Successive matrix squaring algorithm for computing outer inverses,” Applied Mathematics and Computation, vol. 203, no. 1, pp. 19-29, 2008. · Zbl 1158.65028 · doi:10.1016/j.amc.2008.04.037
[7] M. Miladinović, S. Miljković, and P. Stanimirović, “Modified SMS method for computing outer inverses of Toeplitz matrices,” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3131-3143, 2011. · Zbl 1262.65052 · doi:10.1016/j.amc.2011.08.046
[8] D. S. Djordjević and P. S. Stanimirović, “On the generalized Drazin inverse and generalized resolvent,” Czechoslovak Mathematical Journal, vol. 51(126), no. 3, pp. 617-634, 2001. · Zbl 1079.47501 · doi:10.1023/A:1013792207970
[9] D. S. Djordjević and P. S. Stanimirović, “Splittings of operators and generalized inverses,” Publicationes Mathematicae Debrecen, vol. 59, no. 1-2, pp. 147-159, 2001. · Zbl 0981.47001
[10] X. Liu, Y. Yu, and C. Hu, “The iterative methods for computing the generalized inverse AT,S(2) of the bounded linear operator between Banach spaces,” Applied Mathematics and Computation, vol. 214, no. 2, pp. 391-410, 2009. · Zbl 1175.65063 · doi:10.1016/j.amc.2009.04.007
[11] X.-Z. Chen and R. E. Hartwig, “The hyperpower iteration revisited,” Linear Algebra and Its Applications, vol. 233, pp. 207-229, 1996. · Zbl 0848.65021 · doi:10.1016/0024-3795(94)00076-X
[12] B. Zheng and G. Wang, “Representation and approximation for generalized inverse AT,S(2): revisited,” Journal of Applied Mathematics & Computing, vol. 22, no. 3, pp. 225-240, 2006. · Zbl 1112.15013 · doi:10.1007/BF02832049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.