zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The fractional-order modeling and synchronization of electrically coupled neuron systems. (English) Zbl 1268.92026
Summary: We generalize the integer-order cable model of the neuron system into the fractional-order domain, where the long memory dependence of the fractional derivative can be a better fit for the neuron response. Furthermore, the chaotic synchronization with a gap junction of two or multi-coupled neurons of fractional order are discussed. The circuit model, fractional-order state equations and the numerical technique are introduced in this paper for individual and multiple coupled neuron systems with different fractional orders. Various examples are introduced with different fractional orders using the nonstandard finite difference scheme together with the Grünwald-Letnikov discretization process, which is easily implemented and reliably accurate.

92C20Neural biology
34A08Fractional differential equations
65L06Multistep, Runge-Kutta, and extrapolation methods
Full Text: DOI
[1] Sabatier, J.; Agrawal, O. P.; Machado, J. A. Tenreiro: Advances in fractional calculus; theoretical developments and applications in physics and engineering, (2007) · Zbl 1116.00014
[2] Haba, T. C.; Loum, G. L.; Ablart, G.: An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension, Chaos solitons fractals 33, 364-373 (2007)
[3] Saito, K.; Sugi, M.: Simulation of power-law relaxations by analog circuits: fractal distribution of relaxation times and non-integer exponents, IEICE trans. Fundam. electron. Commun. comput. Sci. 76, No. 2, 205-209 (1993)
[4] Radwan, A. G.; Elwakil, A. S.; Soliman, A. M.: On the generalization of second-order filters to fractional-order domain, J. circuits syst. Comput. 18, No. 2, 361-386 (2009)
[5] Radwan, A. G.; Elwakil, A. S.; Soliman, A. M.: Fractional-order sinusoidal oscillators: design procedure and practical examples, IEEE trans. Circuits syst. I 55, 2051-2063 (2008) · Zbl 1191.94175
[6] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[7] Shamim, A.; Radwan, A. G.; Salama, K. N.: Fractional Smith chart theory and application, IEEE microw. Wirel. compon. Lett. 21, No. 3, 117-119 (2011)
[8] Radwan, A. G.; Shamim, A.; Salama, K. N.: Theory of fractional-order elements based impedance matching networks, IEEE microw. Wirel. compon. Lett. 21, No. 3, 120-122 (2011)
[9] Radwan, A. G.; Soliman, A. M.; Elwakil, A. S.; Sedeek, A.: On the stability of linear systems with fractional-order elements, Chaos solitons fractals 40, No. 5, 2317-2328 (2009) · Zbl 1198.93151 · doi:10.1016/j.chaos.2007.10.033
[10] Magin, R. L.: Fractional calculus in bioengineering, (2006)
[11] Kocarev, L.; Parlitz, U.: General approach for chaotic synchronization with applications to communication, Phys. rev. Lett. 74, 5-28 (1995)
[12] Li, C.; Zhou, T.: Synchronization in fractionalorder differential systems, Physica D 212, No. 1--2, 111-125 (2005) · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012
[13] Erjaee, G. H.; Momani, S.: Phase synchronization in fractional differential chaotic systems, Phys. lett. A 372, No. 14, 2350-2354 (2008) · Zbl 1220.34004 · doi:10.1016/j.physleta.2007.11.065
[14] Yu, Y.; Li, H.; Su, Y.: The synchronization of three chaotic fractional-order Lorenz systems with bidirectional coupling, J. phys.: conf. Ser. 96, No. 1, 112-113 (2008)
[15] Odibata, Z. M.; Corsonb, N.; Aziz-Alaouibt, M. A.; Bertellec, C.: Synchronization of chaotic fractional-order systems via linear control, Int. J. Bifur. chaos (2010)
[16] Bhalekar, S.; Daftardar-Gejji, V.: Synchronization of different fractional-order chaotic systems using active control, Commun. nonlinear sci. Numer. simul. 15, 3536-3546 (2010) · Zbl 1222.94031 · doi:10.1016/j.cnsns.2009.12.016
[17] Yua, Y.; Lib, Han-Xiong: The synchronization of fractional-order Rössler hyperchaotic systems, Physica A 387, 1393-1403 (2008)
[18] Momani, S.: Analytic and approximate solutions of the space-and time-fractional telegraph equations, Appl. math. Comput. 170, 1126-1134 (2005) · Zbl 1103.65335 · doi:10.1016/j.amc.2005.01.009
[19] Abdulaziz, O.; Hashim, I.; Momani, S.: Solving systems of fractional differential equations by homotopy-perturbation method, Phys. lett. A 372, 451-459 (2008) · Zbl 1217.81080 · doi:10.1016/j.physleta.2007.07.059
[20] Momani, S.; Odibat, Z.; Alawneh, A.: Variational iteration method for solving the space-and time-fractional KdV equation, Numer. methods partial differential equations 24, No. 1, 262-271 (2008) · Zbl 1130.65132 · doi:10.1002/num.20247
[21] Odibat, Z.; Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. math. Appl. 58, 2199-2208 (2009) · Zbl 1189.65254 · doi:10.1016/j.camwa.2009.03.009
[22] Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations, J. math. Anal. appl. 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[23] Diethelm, K.; Ford, N. J.; Freed, A. D.: Detailed error analysis for a fractional Adams method, Numer. algorithms 26, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[24] Mickens, R. E.: Advances in the applications of nonstandard finite difference schemes, (2005) · Zbl 1079.65005
[25] R.E. Mickens, Applications of Nonstandard Finite Difference Schemes, Singapore, 2000. · Zbl 0989.65101
[26] G. Hussian, M. Alnaser, S. Momani, Non-standard discretization of fractional differential equations, in: Proceeding of 8th Seminar of Differential Equations and Dynamical Systems, Isfahan, Iran, 2008.
[27] Radwan, A. G.; Moaddy, K.; Momani, S.: Stability and nonstandard finite difference method of the generalized Chua’s circuit, Comput. math. Appl. 62, No. 3, 961-970 (2011) · Zbl 1228.65120 · doi:10.1016/j.camwa.2011.04.047
[28] Moaddy, K.; Hashim, I.; Momani, S.: Non-standard finite difference schemes for solving fractional-order räossler chaotic and hyperchaotic systems, Comput. math. Appl. 62, No. 3, 1068-1074 (2011) · Zbl 1228.65119 · doi:10.1016/j.camwa.2011.03.059
[29] Bin, D.; Jiang, W.; Xiangyang, F.: Chaotic synchronization with gap junction of multi-neurons in external electrical stimulation, Chaos solitons fractals 25, 1185-1192 (2005) · Zbl 1091.34027 · doi:10.1016/j.chaos.2004.11.063
[30] Jiang, W.; Bin, D.; Xiangyang, F.: Chaotic synchronization of two coupled neurons via nonlinear control in external electrical stimulation, Chaos solitons fractals 27, 1272-1278 (2006) · Zbl 1092.92503 · doi:10.1016/j.chaos.2005.04.102
[31] Linaro, D.; Poggi, T.; Storace, M.: Experimental bifurcation diagram of a circuit-implemented neuron model, Phys. lett. A 374, No. 45, 4589-4593 (2010)
[32] Bemmo, D. Tatchim; Siewe, M. Siewe; Tchawoua, C.: Nonlinear oscillations of the Fitzhugh--Nagumo equations under combined external and two-frequency parametric excitations, Phys. lett. A 375, No. 19, 1944-1953 (2011) · Zbl 1242.34057
[33] Thompson, C. J.; Bardos, D. C.; Yang, Y. S.; Joyner, K. H.: Nonlinear cable models for cells exposed to electrical fields I. General theory and space clamped solutions, Chaos solitons fractals 10, No. 11, 1825-1842 (1999) · Zbl 0967.35139 · doi:10.1016/S0960-0779(98)00131-3