zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sliding mode control with bounded $\Cal L_2$ gain performance of Markovian jump singular time-delay systems. (English) Zbl 1268.93037
Summary: In this paper, we investigate the problem of Sliding Mode Control (SMC) of Markovian jump singular time-delay systems. The aim is to consider the bounded $\Cal L_2$ gain performance in the analysis of sliding mode dynamics, thus to improve the transient performance of the SMC system. Firstly, a delay-dependent bounded real lemma is proposed for the underlying system to be stochastically admissible while achieving the prescribed bounded $\Cal L_2$ gain performance condition. An integral-type switching surface function is designed by taking the singular matrix into account, thus the resulting sliding mode dynamics is a full-order singular Markovian jump time-delay system. Then, the sliding mode dynamics is analyzed and a solvability condition for the desired switching surface function is derived. Moreover, an SMC law is synthesized to drive the system trajectories onto the predefined switching surface in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed techniques.

93B12Variable structure systems
60J75Jump processes
Full Text: DOI Link
[1] Hirschorn, R. M.: Singular sliding-mode control, IEEE transactions on automatic control 46, 276-285 (2001) · Zbl 0992.93007 · doi:10.1109/9.905692
[2] Juang, J. -C.; Lee, C. -M.: Design of sliding mode controllers with bounded $\Bbb L2$ gain performance: an LMI approach, International journal of control 78, 647-661 (2005) · Zbl 1121.93013 · doi:10.1080/00207170500123585
[3] Nguang, S. K.; Assawinchaichote, W.; Shi, P.: Robust $\Bbb h\infty $ control design for fuzzy singularly perturbed systems with Markovian jumps: an LMI approach, IET control theory applications 1, 893-908 (2007)
[4] Niu, Y.; Ho, D. W. C.; Lam, J.: Robust integral sliding mode control for uncertain stochastic systems with time-varying delay, Automatica 41, 873-880 (2005) · Zbl 1093.93027 · doi:10.1016/j.automatica.2004.11.035
[5] Shi, P.; Xia, Y.; Liu, G. P.; Rees, D.: On designing of sliding-mode control for stochastic jump systems, IEEE transactions on automatic control 51, 97-103 (2006)
[6] Utkin, V.: Sliding modes in control optimization, (1992) · Zbl 0748.93044
[7] Wu, M.; He, Y.; She, J. H.; Liu, G. P.: Delay-dependent criteria for robust stability of time-varying delay systems, Automatica 40, 1435-1439 (2004) · Zbl 1059.93108 · doi:10.1016/j.automatica.2004.03.004
[8] Wu, L.; Shi, P.; Gao, H.: State estimation and sliding mode control of Markovian jump singular systems, IEEE transactions on automatic control 55, 1213-1219 (2010)
[9] Wu, L.; Shi, P.; Gao, H.; Wang, C.: $\Bbb h\infty $ filtering for 2D Markovian jump systems, Automatica 44, 1849-1858 (2010) · Zbl 1149.93346 · doi:10.1016/j.automatica.2007.10.027
[10] Wu, Z.; Shi, P.; Su, H.; Chu, J.: $\ell 2-\ell \infty $ filter design for discrete-time singular Markovian jump systems with time-varying delays, Information sciences 181, 5534-5547 (2011) · Zbl 1243.93116
[11] Wu, L.; Zheng, W. X.: Passivity-based sliding mode control of uncertain singular time-delay systems, Automatica 45, 2120-2127 (2009) · Zbl 1175.93065 · doi:10.1016/j.automatica.2009.05.014
[12] Xia, Y.; Jia, Y.: Robust sliding-mode control for uncertain time-delay systems: an LMI approach, IEEE transactions on automatic control 48, 1086-1092 (2003)