×

zbMATH — the first resource for mathematics

Control cost for a discrete linear object under uncertainty about the spectral composition of perturbances. (English. Russian original) Zbl 1268.93103
Autom. Remote Control 73, No. 12, 2038-2048 (2012); translation from Avtom. Telemekh. 2012, No. 12, 110-123 (2012).
Summary: We study the sensitivity of the control cost for a linear stationary object with discrete time to estimation errors in spectral densities of the perturbances. We establish that the cost functional defined on sufficiently massive classes of spectral densities with standard metrization is irregular. We propose a regularization for the cost functional with a change in metric that lets us justify the price description with the substitution method.
MSC:
93C73 Perturbations in control/observation systems
93B60 Eigenvalue problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control for Dynamical Objects), Moscow: Nauka, 1981. · Zbl 0522.93002
[2] Bunich, A.L., Degenerate Problems of Designing the Control System of a Linear Discrete Plant, Autom. Remote Control, 2005, vol. 66, no. 11, pp. 1733–1742. · Zbl 1126.93342 · doi:10.1007/s10513-005-0208-9
[3] Barabanov, A.E. and Pervozvanskii, A.A., Optimization by Frequency-Uniform Criteria (H-Theory), Autom. Remote Control, 1992, vol. 53, no. 9, part 1, pp. 1301–1327.
[4] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Upper Saddle River: Prentice Hall, 1996. · Zbl 0999.49500
[5] Haddad, W.M., Bernstein, D.S., and Mustafa, D., Mixed-Norm H 2/H Regulation and Estimation: The Discrete-Time Case, Syst. Control Lett., 1991, vol. 16, no. 4, pp. 235–247. · Zbl 0728.93033 · doi:10.1016/0167-6911(91)90011-3
[6] Vladimirov, I.G., Kurdyukov, A.P., and Semyonov, A.V., Asymptotics of Anisotropic Norms of Stationary Linear Systems, Automat. Remote Control, 1999, vol. 60, no. 3, part 1, pp. 359–366. · Zbl 1273.93169
[7] Borovkov, A.A., Matematicheskaya statistika (Mathematical Statistics), Moscow: Nauka, 1984.
[8] Davison, E.J., The Robust Control of a Servomechanism Problem for Linear Time-Invariant Multivariable Systems, IEEE Trans. Autom. Control, 1976, vol. 21, no. 1, pp. 25–34. · Zbl 0326.93007 · doi:10.1109/TAC.1976.1101137
[9] Chentsov, N.N., On the Correctness of the Statistical Point Estimation Problem, Theor. Veroyat. Primen., 1981, vol. 26, no. 1, pp. 15–31. · Zbl 0459.62002
[10] Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W.A., Robust Statistics-The Approach Based on Influence Functions, New York: Wiley, 1986. Translated under the title Robastnost’ v statistike. Podkhod na osnove funktsii vliyaniya, Moscow: Mir, 1989.
[11] Rosenbrock, H.H. and McMorran, P.D., Good, Bad or Optimal? IEEE Trans. Autom. Control, 1971, vol. 16, no. 6, pp. 552–5549. · doi:10.1109/TAC.1971.1099822
[12] Doyle, J.C., Guaranteed Margins for LQG Regulators, IEEE Trans. Autom. Control, 1978, vol. 23, no. 4, pp. 756–757. · doi:10.1109/TAC.1978.1101812
[13] Shteinberg, Sh.E., Serezhin, L.P., Zalutskii, I.E., et al., Design and Maintenance Principles for Efficient Control Systems, Promyshl. ASU Kontrollery, 2004, no. 7, pp. 2–7.
[14] Rozanov, Yu.A., Statsionarnye sluchainye protsessy (Stationary Random Processes), Moscow: Nauka, 1990. · Zbl 0721.60040
[15] Shiryaev, A.N., Veroyatnost’-2 (Probability-2), Moscow: MTsNMO, 2007.
[16] Nikol’skii, N.K., Lektsii ob operatore sdviga (Lectures on the Shift Operator), Moscow: Nauka, 1980.
[17] Ibragimov, I.A., On the Asymptotic Behavior of the Prediction Error, Theor. Veroyat. Primen., 1964, vol. 9, no. 4, pp. 695–703.
[18] Ibragimov, I.A. and Solev, V.N., Asymptotic Behavior of the Prediction Error in a Stationary Sequence with Spectral Density of a Special Form, Theor. Veroyat. Primen., 1968, vol. 13, no. 4, pp. 746–750. · Zbl 0214.45402
[19] Babayan, N.M., On the Asymptotic Behavior of the Prediction Error in the Singular Case, Theor. Veroyat. Primen., 1984, vol. 29, no. 1, pp. 147–150. · Zbl 0531.60046
[20] Hamilton, J.B., Time Series Analysis, Princeton: Princeton Univ. Press, 1994. · Zbl 0831.62061
[21] Venttsel’, A.D., Kurs teorii sluchainykh protsessov (A Course in the Theory of Random Processes), Moscow: Nauka, 1996. · Zbl 0887.60002
[22] Tsypkin, Ya.Z., Optimality in Problems and Methods of Modern Control Theory, Vestn. Akad. Nauk SSSR, 1982, no. 9, pp. 116–121.
[23] Grenander, U. and Rosenblatt, M., An Extentsion of a Theorem of A.G. Szego and Its Application to the Study of Stochastic Processes, Trans. Am. Math. Soc., 1954, vol. 76, no. 1, pp. 112–126. · Zbl 0059.11804
[24] Geronimus, Ya.L., Mnogochleny, ortogonal’nye na okruzhnosti i na otrezke (Polynomials Orthogonal on a Circle and on a Segment), Moscow: Fizmatlit, 1958.
[25] Gokhberg, I.Ts. and Fel’dman, I.A., Uravneniya v svertkakh i proektsionnye metody (Equations in Convolutions and Projective Methods), Moscow: Nauka, 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.