Garti, Shimon; Shelah, Saharon (\(\kappa ,\theta \))-weak normality. (English) Zbl 1269.03046 J. Math. Soc. Japan 64, No. 2, 549-559 (2012). An ultrafilter \(D\) on a cardinal \(\kappa\) is weakly normal if for every regressive function \(f\) on \(\kappa\) there is some \(\alpha_* < \kappa\) such that \(\{ i<\kappa : f(i) \leq \alpha_* \} \in D\). The authors deal with the notion of weak normality. Let \(\bar{\lambda} = \langle \lambda_i: i<\kappa \rangle\) be a sequence of cardinals with limit \(\lambda\). They characterize the situation of \(|\prod_{i<\kappa} \lambda_i/D| = \lambda\). Further on, they find a necessary condition for a positive answer to a question of Monk on the depth of Boolean algebras. Reviewer: Martin Weese (Potsdam) MSC: 03E04 Ordered sets and their cofinalities; pcf theory 03E05 Other combinatorial set theory 06E05 Structure theory of Boolean algebras Keywords:ultrafilters; weak normality, Boolean algebras; depth; measurable cardinal PDFBibTeX XMLCite \textit{S. Garti} and \textit{S. Shelah}, J. Math. Soc. Japan 64, No. 2, 549--559 (2012; Zbl 1269.03046) Full Text: DOI arXiv Euclid References: [1] C. C. Chang and H. J. Keisler, Model theory, Stud. Logic Found. Math., 73 , North-Holland Publishing Co., Amsterdam, 1973. · Zbl 0276.02032 [2] M. Foreman, M. Magidor and S. Shelah, Martin’s maximum, saturated ideals and nonregular ultrafilters, II, Ann. of Math. (2), 127 (1988), 521-545. · Zbl 0645.03028 · doi:10.2307/2007004 [3] S. Garti and S. Shelah, Depth of Boolean algebras, Notre Dame J. Form. Log., 52 (2011), 307-314. · Zbl 1236.03033 · doi:10.1215/00294527-1435474 [4] T. Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. · Zbl 0419.03028 [5] A. Kanamori, The higher infinite, Large cardinals in set theory from their beginnings, Perspect. Math. Logic, Springer-Verlag, Berlin, 1994. · Zbl 0813.03034 [6] J. König, Über die Grundlagen der Mengenlehre und das Kontinuumproblem, Math. Ann., 61 (1905), 156-160. · JFM 36.0097.02 · doi:10.1007/BF01457735 [7] M. Magidor, How large is the first strongly compact cardinal? or A study on identity crises, Ann. Math. Logic, 10 (1976), 33-57. · Zbl 0342.02051 · doi:10.1016/0003-4843(76)90024-3 [8] J. D. Monk, Cardinal invariants on Boolean algebras, Progr. Math., 142 , Birkhäuser Verlag, Basel, 1996. · Zbl 0849.03038 [9] S. Shelah, On the cardinality of ultraproduct of finite sets, J. Symbolic Logic, 35 (1970), 83-84. · Zbl 0196.01004 · doi:10.2307/2271159 [10] S. Shelah, Classification theory and the number of nonisomorphic models, Stud. Logic Found. Math., 92 , North-Holland Publishing Co., Amsterdam, 1978. · Zbl 0388.03009 [11] S. Shelah, Advances in cardinal arithmetic, Finite and infinite combinatorics in sets and logic, Banff, AB, 1991, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 411 , Kluwer Acad. Publ., Dordrecht, 1993, pp.,355-383. · Zbl 0844.03028 · doi:10.1007/978-94-011-2080-7_25 [12] S. Shelah, The depth of ultraproducts of Boolean algebras, Algebra Universalis, 54 (2005), 91-96. · Zbl 1098.03059 · doi:10.1007/s00012-005-1925-1 [13] W. H. Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal, de Gruyter Ser. Log. Appl., 1 , Walter de Gruyter & Co., Berlin, 1999. · Zbl 0954.03046 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.