Lam, Thomas; Shimozono, Mark From quantum Schubert polynomials to \(k\)-Schur functions via the Toda lattice. (English) Zbl 1269.05113 Math. Res. Lett. 19, No. 1, 81-93 (2012). Summary: We show that Lapointe-Lascoux-Morse \(k\)-Schur functions (at \(t=1\)) and Fomin-Gelfand-Postnikov quantum Schubert polynomials can be obtained from each other by a rational substitution. This is based on Kostant’s solution of the Toda lattice and Peterson’s work on quantum Schubert calculus. Cited in 8 Documents MSC: 05E05 Symmetric functions and generalizations 14N15 Classical problems, Schubert calculus Keywords:Lapointe-Lascoux-Morse \(k\)-Schur functions; Fomin-Gelfand-Postnikov quantum Schubert polynomials PDF BibTeX XML Cite \textit{T. Lam} and \textit{M. Shimozono}, Math. Res. Lett. 19, No. 1, 81--93 (2012; Zbl 1269.05113) Full Text: DOI arXiv