Long, D. D.; Reid, A. W. Small subgroups of SL\((3,\mathbb Z)\). (English) Zbl 1269.57002 Exp. Math. 20, No. 4, 412-425 (2011). Lubotzky asked the following question: Does every finite-index subgroup of \(SL(n,{\mathbb Z}) (n\geq 3)\) contain two-generator subgroups of finite index? In the paper under review the authors show the following Theorem 1.2 as evidence for an affirmative answer for the case \(n=3.\) Theorem 1.2 states that the group \(SL(3,{\mathbb Z})\) contains a family \(\{N_{j}\}\) of two-generator subgroups of finite index with the property that \(\bigcap N_{j} =1.\) In order to prove this main result, the authors study two one-parameter families of representations of \(\pi_{1}(S^{3} \backslash K)\) into \(SL(n,{\mathbb R})\), where \(K\) is the figure-eight knot. Let \(\Gamma=\pi_{1}(S^{3} \backslash K)\). If we choose generators \(x\) and \(y\) for the fiber group (which is denoted by \(F\)) and \(z\) as the stable letter, then \(\Gamma\) is presented as \[ <x,y,z\mid zxz^{-1}=xy, zyz^{-1}=yxy>. \] Here two representations \(\rho_{k}, \beta_{T}\) are given by explicit images for \(x,y,z\), respectively. The authors prove that, if \(k \in {\mathbb Z}\) (respectively nonzero \(T\in {\mathbb Z}\)) is fixed, then the images of the fiber groups \(\rho_{k}(F)\) (respectively \(\beta_{T}(F)\)) are Zariski-dense subgroups of \(SL(3, {\mathbb R})\). Also they show that for a fixed nonzero integer value of \(T\), the group \(\beta_{T}(F)\) (and therefore \(\beta_{T}(\Gamma)\)) has finite index in \(SL(3,{\mathbb Z})\) and that \(\bigcap _{T>0} \beta_{T}(F)=1.\) After raising a natural question on the existence of an orientable finite-volume hyperbolic 3-manifold \(M\) (or a compact orientable hyperbolizable 3-manifold \(M\) that is not an I-bundle over a surface) for which \(\pi_{1}(M)\) admits a faithful representation into \(SL(3,{\mathbb Z})\), the paper ends with an appendix, which shows the outline of the method for producing the representations \(\rho_{k}, \beta_{T}\) and computations of some indices by using Magma. Reviewer: Shigeyasu Kamiya (Okayama) Cited in 1 ReviewCited in 13 Documents MathOverflow Questions: Direct product of free groups in \(\mathrm{SL}_3(\mathbb{Z})\) MSC: 57M07 Topological methods in group theory 20H25 Other matrix groups over rings 57M50 General geometric structures on low-dimensional manifolds 20C12 Integral representations of infinite groups Keywords:figure-eight knot group; Zariski dense × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] DOI: 10.1016/0022-4049(76)90065-7 · Zbl 0322.20024 · doi:10.1016/0022-4049(76)90065-7 [2] Bloom [Bloom 67] D. M., Trans. Amer. Math. Soc. 127 pp 150– (1967) [3] Brown [Brown 89] K., Buildings (1989) [4] DOI: 10.1017/S0017089500004419 · Zbl 0452.20049 · doi:10.1017/S0017089500004419 [5] DOI: 10.1080/10586458.2006.10128965 · Zbl 1117.57016 · doi:10.1080/10586458.2006.10128965 [6] DOI: 10.1007/BF01389358 · Zbl 0498.20033 · doi:10.1007/BF01389358 [7] Elstrodt [Elstrodt 99] J., Discontinuous Groups and Harmonic Analysis on Three-Dimensional Hyperbolic Spaces (1999) [8] Goldman [Goldman 90] W. M., J. Diff. Geom. 31 pp 791– (1990) [9] DOI: 10.1007/s00208-002-0380-y · Zbl 1048.57009 · doi:10.1007/s00208-002-0380-y [10] Lubotzky [Lubotzky 86] A., Proceedings of Groups–St. Andrews 1985, London Math. Soc. Lecture Note Ser. 121 pp 254– (1986) [11] Lubotzky [Lubotzky 97] A., Algebra, K-Theory, Groups, and Education (New York, 1997), Contemp. Math. 243 pp 125– (1999) [12] DOI: 10.1016/0021-8693(87)90212-2 · Zbl 0626.20022 · doi:10.1016/0021-8693(87)90212-2 [13] Kac [Kac and Vinberg 67] V., Mat. Zametki 1 pp 347– (1967) [14] DOI: 10.1142/S0218216597000455 · Zbl 0896.57007 · doi:10.1142/S0218216597000455 [15] Margulis [Margulis 89] G., Discrete Subgroups of Semi-simple Lie Groups, Ergeb. der Math. 17 (1989) · Zbl 0226.22012 [16] Mennicke [Mennicke 67] J., Proc. Royal Soc. Edinburgh Sect. A 67 pp 309– (1966) [17] Morandi [Morandi 96] P., Field and Galois Theory, Graduate Texts in Math. 167 (1996) [18] Narkiewicz [Narkiewicz 04] W., Elementary and Analytic Theory of Algebraic Numbers, third edition, Springer Monographs in Mathematics (2004) · Zbl 1159.11039 [19] Newman [Newman 72] M., Integral Matrices (1972) · Zbl 0254.15009 [20] Schwartz [Schwartz 07] R. E., Spherical CR Geometry and Dehn Surgery, Annals of Math. Studies 165 (2007) · Zbl 1116.57016 [21] Serre [Serre 74] J-P., Proc. Conf. Canberra (1973), Lecture Notes in Math. 372 pp 734– (1974) [22] DOI: 10.1007/s10711-005-0123-9 · Zbl 1112.20044 · doi:10.1007/s10711-005-0123-9 [23] Steinberg [Steinberg 85] R., Finite Groups–Coming of Age (Montreal, 1982), Contemp. Math. 45 pp 335– (1985) [24] DOI: 10.1016/0021-8693(87)90106-2 · Zbl 0679.20040 · doi:10.1016/0021-8693(87)90106-2 [25] DOI: 10.2307/2006943 · Zbl 0568.14025 · doi:10.2307/2006943 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.