Bodineau, Thierry; Lagouge, Maxime Large deviations of the empirical currents for a boundary-driven reaction diffusion model. (English) Zbl 1269.60029 Ann. Appl. Probab. 22, No. 6, 2282-2319 (2012). The authors consider a model that describes reaction diffusion equations by combining the symmetric simple exclusion process to a Glauber dynamics which models the annihilation and creation of particles. A well-known result on density hydrodynamic large deviations [G. Jona-Lasinio, C. Landim and M. E. Vares, Probab. Theory Relat. Fields 97, No. 3, 339–361 (1993; Zbl 0792.60096)] is generalized, by deriving the joint large deviations of the density and of the (conservative and nonconservative) currents flowing in the system. Reviewer: Nasir N. Ganikhodjaev (Kuantan) Cited in 12 Documents MSC: 60F10 Large deviations 82C22 Interacting particle systems in time-dependent statistical mechanics Keywords:large deviations; interacting particle systems Citations:Zbl 0792.60096 PDF BibTeX XML Cite \textit{T. Bodineau} and \textit{M. Lagouge}, Ann. Appl. Probab. 22, No. 6, 2282--2319 (2012; Zbl 1269.60029) Full Text: DOI arXiv Euclid OpenURL References: [1] Bertin, E. (2006). An exactly solvable dissipative transport model. J. Phys. A 39 1539-1546. · Zbl 1088.82023 [2] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2003). Large deviations for the boundary driven symmetric simple exclusion process. Math. Phys. Anal. Geom. 6 231-267. · Zbl 1031.82039 [3] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2007). Large deviations of the empirical current in interacting particle systems. Theory Probab. Appl. 51 2-27. · Zbl 1190.82027 [4] Bertini, L., De Sole, A., Gabrielli, D., Jona Lasinio, G. and Landim, C. (2007). Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. P07014. · Zbl 1190.82027 [5] Bertini, L., Landim, C. and Mourragui, M. (2009). Dynamical large deviations for the boundary driven weakly asymmetric exclusion process. Ann. Probab. 37 2357-2403. · Zbl 1187.82083 [6] Bodineau, T. and Derrida, B. (2007). Cumulants and large deviations of the current through non-equilibrium steady states. C. R. Physique 8 540-555. [7] Bodineau, T. and Lagouge, M. (2010). Current large deviations in a driven dissipative model. J. Stat. Phys. 139 201-218. · Zbl 1191.82029 [8] De Masi, A., Ferrari, P. A. and Lebowitz, J. L. (1985). Rigorous derivation of reaction-diffusion equations with fluctuations. Phys. Rev. Lett. 55 1947-1949. [9] De Masi, A., Ferrari, P. A. and Lebowitz, J. L. (1986). Reaction-diffusion equations for interacting particle systems. J. Stat. Phys. 44 589-644. · Zbl 0629.60107 [10] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38 . Springer, Berlin. · Zbl 1177.60035 [11] Derrida, B. (2007). Non-equilibrium steady states: Fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. 7 P07023, 45 pp. (electronic). [12] Donsker, M. D. and Varadhan, S. R. S. (1989). Large deviations from a hydrodynamic scaling limit. Comm. Pure Appl. Math. 42 243-270. · Zbl 0780.60027 [13] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes : Characterization and Convergence . Wiley, New York. · Zbl 0592.60049 [14] Evans, L. C. (1998). Partial Differential Equations. Graduate Studies in Mathematics 19 . Amer. Math. Soc., Providence, RI. · Zbl 0902.35002 [15] Farfan Vargas, J. S., Landim, C. and Mourragui, M. (2011). Hydrodynamic behavior of boundary driven exclusion processes in dimension \(d>1\). Stochastic Process. Appl. 121 725-758. · Zbl 1219.82115 [16] Gallavotti, G. (2007). Fluctuation relation, fluctuation theorem, thermostats and entropy creation in non equilibrium statistical physics. C. R. Acad. Sci. Ser. B 8 486-494. [17] Jona-Lasinio, G., Landim, C. and Vares, M. E. (1993). Large deviations for a reaction diffusion model. Probab. Theory Related Fields 97 339-361. · Zbl 0792.60096 [18] Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 320 . Springer, Berlin. · Zbl 0927.60002 [19] Kipnis, C., Olla, S. and Varadhan, S. R. S. (1989). Hydrodynamics and large deviation for simple exclusion processes. Comm. Pure Appl. Math. 42 115-137. · Zbl 0644.76001 [20] Landim, C., Mourragui, M. and Sellami, S. (2002). Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs. Theory Probab. Appl. 45 604-623. · Zbl 1008.60106 [21] Levanony, D. and Levine, D. (2006). Correlation and response in a driven dissipative model. Phys. Rev. E 73 055102(R). [22] Quastel, J., Rezakhanlou, F. and Varadhan, S. R. S. (1999). Large deviations for the symmetric simple exclusion process in dimensions \(d\geq 3\). Probab. Theory Related Fields 113 1-84. · Zbl 0928.60087 [23] Shokef, Y. and Levine, D. (2006). Energy distribution and effective temperatures in a driven dissipative model. Phys. Rev. E 74 051111. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.