×

Critical Brownian sheet does not have double points. (English) Zbl 1269.60053

Let \[ T = \{ ( s , t ) ; \in ( 0 , \infty ) ^{2 N } , s _{i } \neq t _{i } , i = 1 , \dotsc , N \}, \] let \(B\) be a \(N\)-parameter \(\mathbb{R}^{d }\)-Brownian sheet, \(\emptyset \neq A \subset \mathbb{R}^{d }\), \(W _{1 }\), \(W _{2 }\) other, independent, \(N\)-parameter \(\mathbb{R}^{d }\) Brownian sheets. The main result states that \[ \operatorname{P}(\text{exists } ( u _{1 } , u _{2 } ) \in T , B ( u _{1 } ) = B ( u _{2 } ) \in A ) > 0 \] is equivalent to \[ \operatorname{P} (\text{exists}\; (u_{1},u_{2})\in T , W _{1 } ( u _{1 } ) = W _{2 } ( u _{2 } ) \in A ) > 0. \] A tool used are “pinned sheets” \(B _{s } ( t ) = B(t)-E ( B ( t ) ; B ( s ) )\).
This yields the following corollaries.
1. If \[ M _{2 } = \{ x : \text{exists } s \neq t \text{ in }( 0 , \infty )^{N }\text{ with } B ( s ) = B(t)=x\} \] (the set of double points of \(B\)), then \(\operatorname{P} ( M _{2 } \cap A \neq \emptyset ) > 0\) holds for all \(A \neq \emptyset\) if \(d<2N\), is equivalent to \(\operatorname{Cap}_{2 ( d - 2 N ) } ( A ) > 0\) if \(d > 2 N\) and, if \(d = 2 N\), is equivalent to the existence of a probability \(\mu\) with compact support \(\subset A\) and \[ \int \int |\log _{+ } ( | x-y | ^{- 1 } ) | ^{2 } d \mu ( x ) d \mu ( y ) < \infty. \] \(\operatorname{Cap}_{\beta } ( A ) ^{- 1 }\) is defined as \[ \inf \int \int k _{\beta } ( x-y ) d \mu ( x ) d \mu ( y ) \] over all probabilities \(\mu\) with compact support \(\subset A\), \(k _{\beta } ( x ) = \| x \| ^{- \beta }\) for \(\beta > 0\), \(\log _{+ } ( \| x \| ^{- 1 } )\) for \(\beta = 0\), \(1\) for \(\beta < 0\).
2. \(B\) has double points if and only if \(d < 4 N\). \(M _{2 }\) has a.s. positive Lebesgue measure if and only if \(d < 2 N\).
3. Define \(s < _{\pi } t\) for \(s , t \in \mathbb{R}^{N }\), \(\pi \subset \{ 1 , \dotsc , n \} \) as \(s _{i } \leq t _{i }\) for \(i \in \pi\) and \(s _{i } \geq t _{i }\) for \(i \notin \pi\), \(s < < _{\pi } t\) if \(s < _{\pi } t\) and \(s _{i } \neq t _{i }\) for all \(i\), \(M _{k }^{ \sim }\) as the set of all \(x \in \mathbb{R}^{d }\) with \(B ( s _{1 } ) = \dotsb = B ( s _{k } ) = x\) for some \(\pi\) and some \(s _{1 } < < _{\pi } \dotsb < < _{\pi } s _{k }\). Then \(P ( M _{k } ^{ \sim } \cap A \neq \emptyset ) > 0\) if and only if \(\operatorname{Cap} _{k ( d - 2 N )} ( A ) > 0\).
4. If the Hausdorff dimension \(\dim _{H } A\) of \(A\) is \(< 2 ( d-2 N )\), then, a.s., \(A\) does not contain double points; in the contrary case, \(\| \dim _{H } ( M _{2 } \cap A ) \| _{\infty } = \dim _{H } A-2 ( d-2 N )\).
The main technical result is as follows.
If \[ \Theta = \prod _{j = 1 }^{N } [ a _{j }, b _{j }] \subset ( 0 , \infty ) ^{N } \] and if \[ \pi \subset \{ 1 , \dotsc , N \},\;s \in ( 0 , \infty ) ^{N } \backslash \Theta,\;s < _{\pi } t \] for all \[ t \in \Theta,\;{\mathcal F} _{\pi} ( s ) = {\mathcal B} ( B ( u ) ; u < _{\pi } s ), \] then, if \(A\) is a bounded random set, with \({\mathcal F} _{\pi } ( s ) \otimes {\mathcal B} (\mathbb{R}^{d })\) measurable \(\chi _{A ( \omega ) } ( x )\) in \(( \omega , x )\), the random sets \((\operatorname{Cap}_{d - 2 N } ( A ) > 0 )\) and the set on which the expectation \(\operatorname{E} (\cdot ; {\mathcal F} _{\pi } ( s ))\) of “there exists \(u\in \Theta\) with \(B ( u ) \in A \)” is non-negative differ by a null set, a.s. A stochastic variant of the definition of \(\operatorname{Cap}_{\beta } A\) (for fixed \(\beta\)) is proved.

MSC:

60G60 Random fields
60G15 Gaussian processes
60J45 Probabilistic potential theory

References:

[1] Biermé, H., Lacaux, C. and Xiao, Y. (2009). Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull. Lond. Math. Soc. 41 253-273. · Zbl 1165.60022 · doi:10.1112/blms/bdn122
[2] Cairoli, R. and Walsh, J. B. (1975). Stochastic integrals in the plane. Acta Math. 134 111-183. · Zbl 0334.60026 · doi:10.1007/BF02392100
[3] Čencov, N. N. (1956). Wiener random fields depending on several parameters. Dokl. Akad. Nauk SSSR ( N.S. ) 106 607-609.
[4] Chen, X. (1994). Hausdorff dimension of multiple points of the \((N,d)\) Wiener process. Indiana Univ. Math. J. 43 55-60. · Zbl 0797.60065 · doi:10.1512/iumj.1994.43.43003
[5] Dalang, R. C., Khoshnevisan, D. and Nualart, E. (2007). Hitting probabilities for systems of non-linear stochastic heat equations with additive noise. ALEA Lat. Am. J. Probab. Math. Stat. 3 231-271. · Zbl 1170.60322
[6] Dalang, R. C. and Nualart, E. (2004). Potential theory for hyperbolic SPDEs. Ann. Probab. 32 2099-2148. · Zbl 1054.60066 · doi:10.1214/009117904000000685
[7] de la Peña, V. H. and Giné, E. (1999). Decoupling : From Dependence to Independence. Randomly Stopped Processes. \(U\)-statistics and Processes. Martingales and Beyond . Springer, New York. · Zbl 0918.60021
[8] Dvoretzky, A., Erdös, P. and Kakutani, S. (1950). Double points of paths of Brownian motion in \(n\)-space. Acta Sci. Math. Szeged 12 75-81. · Zbl 0036.09001
[9] Dvoretzky, A., Erdös, P. and Kakutani, S. (1954). Multiple points of paths of Brownian motion in the plane. Bull. Res. Council Israel 3 364-371.
[10] Dvoretzky, A., Erdős, P., Kakutani, S. and Taylor, S. J. (1957). Triple points of Brownian paths in 3-space. Proc. Cambridge Philos. Soc. 53 856-862. · Zbl 0208.44103 · doi:10.1017/S0305004100032989
[11] Kakutani, S. (1944). On Brownian motions in \(n\)-space. Proc. Imp. Acad. Tokyo 20 648-652. · Zbl 0063.03106 · doi:10.3792/pia/1195572742
[12] Khoshnevisan, D. (1997). Some polar sets for the Brownian sheet. In Séminaire de Probabilités XXXI. Lecture Notes in Math. 1655 190-197. Springer, Berlin. · Zbl 0886.60039
[13] Khoshnevisan, D. (2002). Multiparameter Processes : An Introduction to Random Fields . Springer, New York. · Zbl 1005.60005
[14] Khoshnevisan, D. and Shi, Z. (1999). Brownian sheet and capacity. Ann. Probab. 27 1135-1159. · Zbl 0962.60066 · doi:10.1214/aop/1022677442
[15] Khoshnevisan, D., Wu, D. and Xiao, Y. (2006). Sectorial local non-determinism and the geometry of the Brownian sheet. Electron. J. Probab. 11 817-843 (electronic). · Zbl 1111.60020
[16] Khoshnevisan, D. and Xiao, Y. (2007). Images of the Brownian sheet. Trans. Amer. Math. Soc. 359 3125-3151 (electronic). · Zbl 1124.60037 · doi:10.1090/S0002-9947-07-04073-1
[17] Lévy, P. (1940). Le mouvement brownien plan. Amer. J. Math. 62 487-550. · Zbl 0024.13906 · doi:10.2307/2371467
[18] Mountford, T. S. (1989). Uniform dimension results for the Brownian sheet. Ann. Probab. 17 1454-1462. · Zbl 0695.60077 · doi:10.1214/aop/1176991165
[19] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Springer, Berlin. · Zbl 1099.60003
[20] Orey, S. and Pruitt, W. E. (1973). Sample functions of the \(N\)-parameter Wiener process. Ann. Probab. 1 138-163. · Zbl 0284.60036 · doi:10.1214/aop/1176997030
[21] Peres, Y. (1996). Intersection-equivalence of Brownian paths and certain branching processes. Comm. Math. Phys. 177 417-434. · Zbl 0851.60080 · doi:10.1007/BF02101900
[22] Peres, Y. (1999). Probability on trees: An introductory climb. In Lectures on Probability Theory and Statistics ( Saint-Flour , 1997). Lecture Notes in Math. 1717 193-280. Springer, Berlin. · Zbl 0957.60001 · doi:10.1007/978-3-540-48115-7_3
[23] Rosen, J. (1984). Self-intersections of random fields. Ann. Probab. 12 108-119. · Zbl 0536.60066 · doi:10.1214/aop/1176993376
[24] Ville, J. (1942). Sur un problème de géométrie suggéré par l’étude du mouvement brownien. C. R. Acad. Sci. Paris 215 51-52. · Zbl 0027.41101
[25] Wiener, N. (1923). Differerential space. J. Math. Phys. 2 131-174.
[26] Wiener, N. (1938). The homogeneous chaos. Amer. J. Math. 60 897-936. · Zbl 0019.35406 · doi:10.2307/2371268
[27] Xiao, Y. (1999). Hitting probabilities and polar sets for fractional Brownian motion. Stochastics Stochastics Rep. 66 121-151. · Zbl 0928.60027
[28] Xiao, Y. (2009). Sample path properties of anisotropic Gaussian random fields. In A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math. 1962 (D. Khoshnevisan and F. Rassoul-Agha, eds.) 145-212. Springer, Berlin. · doi:10.1007/978-3-540-85994-9_5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.