×

Optimal asymptotic bounds for spherical designs. (English) Zbl 1270.05026

Summary: In this paper we prove the conjecture of J. Korevaar and J. L. H. Meyers [Integral Transforms Spec. Funct. 1, No. 2, 105–117 (1993; Zbl 0823.41026)]: for each \(N\geq c_dt^d\), there exists a spherical \(t\)-design in the sphere \(S^d\) consisting of \(N\) points, where \(c_d\) is a constant depending only on \(d\).

MSC:

05B30 Other designs, configurations

Citations:

Zbl 0823.41026

References:

[1] B. Bajnok, ”Construction of spherical \(t\)-designs,” Geom. Dedicata, vol. 43, iss. 2, pp. 167-179, 1992. · Zbl 0765.05032 · doi:10.1007/BF00147866
[2] E. Bannai and R. M. Damerell, ”Tight spherical designs. I,” J. Math. Soc. Japan, vol. 31, iss. 1, pp. 199-207, 1979. · Zbl 0403.05022 · doi:10.2969/jmsj/03110199
[3] E. Bannai and R. M. Damerell, ”Tight spherical designs. II,” J. London Math. Soc., vol. 21, iss. 1, pp. 13-30, 1980. · Zbl 0436.05018 · doi:10.1112/jlms/s2-21.1.13
[4] A. V. Bondarenko and M. S. Viazovska, ”Spherical designs via Brouwer fixed point theorem,” SIAM J. Discrete Math., vol. 24, iss. 1, pp. 207-217, 2010. · Zbl 1229.05057 · doi:10.1137/080738313
[5] J. Bourgain and J. Lindenstrauss, ”Distribution of points on spheres and approximation by zonotopes,” Israel J. Math., vol. 64, iss. 1, pp. 25-31, 1988. · Zbl 0667.52001 · doi:10.1007/BF02767366
[6] P. Boyvalenkov, D. Danev, and S. Nikova, ”Nonexistence of certain spherical designs of odd strengths and cardinalities,” Discrete Comput. Geom., vol. 21, iss. 1, pp. 143-156, 1999. · Zbl 0921.05016 · doi:10.1007/PL00009406
[7] H. Cohn, J. H. Conway, N. D. Elkies, and A. Kumar, ”The \(D_4\) root system is not universally optimal,” Experiment. Math., vol. 16, iss. 3, pp. 313-320, 2007. · Zbl 1137.05020 · doi:10.1080/10586458.2007.10129008
[8] H. Cohn and A. Kumar, ”Universally optimal distribution of points on spheres,” J. Amer. Math. Soc., vol. 20, iss. 1, pp. 99-148, 2007. · Zbl 1198.52009 · doi:10.1090/S0894-0347-06-00546-7
[9] X. Chen, A. Frommer, and B. Lang, ”Computational existence proofs for spherical \(t\)-designs,” Numer. Math., vol. 117, iss. 2, pp. 289-305, 2011. · Zbl 1208.65032 · doi:10.1007/s00211-010-0332-5
[10] X. Chen and R. S. Womersley, ”Existence of solutions to systems of underdetermined equations and spherical designs,” SIAM J. Numer. Anal., vol. 44, iss. 6, pp. 2326-2341, 2006. · Zbl 1129.65035 · doi:10.1137/050626636
[11] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Third ed., New York: Springer-Verlag, 1999, vol. 290. · Zbl 0915.52003
[12] P. Delsarte, J. M. Goethals, and J. J. Seidel, ”Spherical codes and designs,” Geometriae Dedicata, vol. 6, iss. 3, pp. 363-388, 1977. · Zbl 0376.05015 · doi:10.1007/BF03187604
[13] R. H. Hardin and N. J. A. Sloane, ”McLaren’s improved snub cube and other new spherical designs in three dimensions,” Discrete Comput. Geom., vol. 15, iss. 4, pp. 429-441, 1996. · Zbl 0858.05024 · doi:10.1007/BF02711518
[14] J. Korevaar and J. L. H. Meyers, ”Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere,” Integral Transform. Spec. Funct., vol. 1, iss. 2, pp. 105-117, 1993. · Zbl 0823.41026 · doi:10.1080/10652469308819013
[15] A. B. J. Kuijlaars and E. B. Saff, ”Asymptotics for minimal discrete energy on the sphere,” Trans. Amer. Math. Soc., vol. 350, iss. 2, pp. 523-538, 1998. · Zbl 0896.52019 · doi:10.1090/S0002-9947-98-02119-9
[16] H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, ”Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature,” Math. Comp., vol. 70, iss. 235, pp. 1113-1130, 2001. · Zbl 0980.76070 · doi:10.1090/S0025-5718-00-01240-0
[17] O. R. Musin, ”The kissing number in four dimensions,” Ann. of Math., vol. 168, iss. 1, pp. 1-32, 2008. · Zbl 1169.52008 · doi:10.4007/annals.2008.168.1
[18] D. O’Regan, Y. J. Cho, and Y. Chen, Topological Degree Theory and Applications, Chapman & Hall/CRC, Boca Raton, FL, 2006, vol. 10. · Zbl 1095.47001 · doi:10.1201/9781420011487
[19] E. B. Saff and A. B. J. Kuijlaars, ”Distributing many points on a sphere,” Math. Intelligencer, vol. 19, iss. 1, pp. 5-11, 1997. · Zbl 0901.11028 · doi:10.1007/BF03024331
[20] P. D. Seymour and T. Zaslavsky, ”Averaging sets: a generalization of mean values and spherical designs,” Adv. in Math., vol. 52, iss. 3, pp. 213-240, 1984. · Zbl 0596.05012 · doi:10.1016/0001-8708(84)90022-7
[21] G. Wagner, ”On averaging sets,” Monatsh. Math., vol. 111, iss. 1, pp. 69-78, 1991. · Zbl 0721.65011 · doi:10.1007/BF01299278
[22] V. A. Yudin, ”Lower bounds for spherical designs,” Izv. Ross. Akad. Nauk Ser. Mat., vol. 61, iss. 3, pp. 213-223, 1997. · Zbl 0890.05015 · doi:10.1070/im1997v061n03ABEH000132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.