zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Discreteness criteria based on a test map in $\mathrm{PU}(n, 1)$. (English) Zbl 1270.30012
Summary: The discreteness of isometry groups in complex hyperbolic space is a fundamental problem. In this paper, discreteness criteria of a $n$-dimensional subgroup $G$ of $\mathrm{SU}(n, 1)$ are investigated by using a test map which may not be in $G$.
30F35Fuchsian groups and automorphic functions
20H10Fuchsian groups and their generalizations (group theory)
Full Text: DOI
[1] Abikoff W and Hass A, Nondiscrete groups of hyperbolic motions, Bull. London Math. Soc. 22 (1990) 233--238 · Zbl 0709.20026 · doi:10.1112/blms/22.3.233
[2] Chen M, Discreteness and convergence of Möbius groups, Geom. Dedicate 104 (2004) 61--69 · Zbl 1053.30038 · doi:10.1023/B:GEOM.0000023036.55318.40
[3] Chen S S and Greenberg L, Hyperbolic spaces, in: Contributions to analysis (a collection of papers dedicated to Lipman Bers) (1974) (New York: Academic Press) pp. 49--87
[4] Fang A and Nai B, On the discreteness and convergence in n-dimensional Möbius groups, J. London Math. Soc. (2) 61 (2000) 761--773 · Zbl 0959.30027 · doi:10.1112/S0024610700008784
[5] Friedland S and Hersonsky S, Jørgensen’s inequality for discrete groups in normed algebras, Duke Math. J. 69 (1993) 593--614 · Zbl 0799.30033 · doi:10.1215/S0012-7094-93-06924-4
[6] Goldman W M, Complex hyperbolic geometry (1999) (New York: Oxford Univ. Press) · Zbl 0939.32024
[7] Isachenko N A, Systems of generators of subgroups of PSL(2,C), Siberian Math. J. 31 (1990) 162--165 · Zbl 0713.20045 · doi:10.1007/BF00971163
[8] Jørgensen T, On discrete groups of Möbius transformations, Am. J. Math. 98 (1976) 739--749 · Zbl 0336.30007 · doi:10.2307/2373814
[9] Martin G J, On discrete Möbius groups in all dimensions, Acta Math. 163 (1989) 253--289 · Zbl 0698.20037 · doi:10.1007/BF02392737
[10] Xie B, Jiang Y and Wang H, Discreteness of subgroups of PU(1,n;C), Proc. Japan Acad. A84 (2008) 78--80 · Zbl 1167.30024 · doi:10.3792/pjaa.84.78
[11] Yang S, Test maps and discrete groups in SL(2,C). Osaka J. Math. 46 (2009) 403--409 · Zbl 1178.30024