zbMATH — the first resource for mathematics

Solvability of one-dimensional phase field systems associated with grain boundary motion. (English) Zbl 1270.35008
The authors investigate a system of two parabolic initial-boundary value problems, which is motivated by the phase field model of grain boundary motion, known as the Kobayashi-Warren-Carter model. They give a meaningful definition of solution to the considered system. The main result of the paper establishes the existence of solutions.

35A01 Existence problems for PDEs: global existence, local existence, non-existence
35K87 Unilateral problems for parabolic systems and systems of variational inequalities with parabolic operators
35R06 PDEs with measure
35K67 Singular parabolic equations
35K20 Initial-boundary value problems for second-order parabolic equations
Full Text: DOI
[1] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems: Oxford Mathematical Monographs. Oxford University Press, USA (2000) · Zbl 0957.49001
[2] Andreu, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics, vol. 223. Birkhäuser, Basel (2004) · Zbl 1053.35002
[3] Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165. American Mathematical Society, USA (2010)
[4] Andreu, F; Mazón, JM; Rossi, JD; Toledo, J, Local and nonlocal weighted \(p\)-Laplacian evolution equations with Neumann boundary conditions, Publ. Mat., 55, 27-66, (2011) · Zbl 1213.35282
[5] Anzellotti, G, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., 135, 293-318, (1983) · Zbl 0572.46023
[6] Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization, MPS-SIAM Series on Optimization, no. 6. SIAM and MPS (2001) · Zbl 1095.49001
[7] Brézis, H.: Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies, vol. 5, Notas de Matemática (50). North-Holland Publishing and American Elsevier Publishing, Amsterdam (1973) · Zbl 1213.35282
[8] Bourbaki, N.: Éléments de Mathématique, Fascicule XIII-Intégration-Chapitres 1, 2, 3, et 4: Actualités Scientifiques et Industrielles, vol. 1175. Deuxiéme Édition Revue et Augmentée, Hermann (1965) · Zbl 1109.35061
[9] Dal Maso, G.: An Introduction to \(Γ \)-convergence. In: ISAS-International School for Advanced Studies. Lecture notes of a course held at SISSA in 1998/99. Birkhäuser, Boston (1993) · Zbl 1183.35159
[10] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press Inc., Boca Raton (1992) · Zbl 0804.28001
[11] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Boston (1984) · Zbl 0545.49018
[12] Giga, M-H; Giga, Y, Very singular diffusion equations: second and fourth order problems, Jpn. J. Ind. Appl. Math., 27, 323-345, (2010) · Zbl 1213.35274
[13] Giga, M.-H., Giga, Y., Kobayashi, R.: Very singular diffusion equations. In: Taniguchi conference on mathematics Nara ’98. Advanced Studies in Pure Mathematics, vol. 31, pp. 93-125. Mathematical Society of Japan, Tokyo (2001) · Zbl 1002.35074
[14] Ito, A; Kenmochi, N; Yamazaki, N, A phase-field model of grain boundary motion, Appl. Math., 53, 433-454, (2008) · Zbl 1199.35138
[15] Ito, A; Kenmochi, N; Yamazaki, N, Weak solutions of grain boundary motion model with singularity, Rend. Mat. Appl. (7), 29, 51-63, (2009) · Zbl 1183.35159
[16] Ito, A; Kenmochi, N; Yamazaki, N, Global solvability of a model for grain boundary motion with constraint, Discrete Contin. Dyn. Syst. Ser. S, 5, 127-146, (2012) · Zbl 1246.35100
[17] Kenmochi, N, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education Chiba Univ., 30, 1-87, (1981)
[18] Kenmochi, N., Yamazaki, N., Large-time behavior of solutions to a phase-field model of grain boundary motion with constraint. In: Current advances in nonlinear analysis and related topics. GAKUTO International Series Mathematical Sciences and Applications, vol. 32, pp. 389-403. Gakkōtosho, Tokyo (2010) · Zbl 1211.35048
[19] Kobayashi, R; Giga, Y, Equations with singular diffusivity, J. Stat. Phys., 95, 1187-1220, (1999) · Zbl 0952.74014
[20] Kobayashi, R., Warren, J.A., Carter, W.C.: A continuum model of grain boundary. Phys. D 140(1-2), 141-150 (2000) · Zbl 0956.35123
[21] Kobayashi, R., Warren, J.A., Carter, W.C.: Grain boundary model and singular diffusivity. In: Free Boundary Problems: Theory and Applications. GAKUTO International Series, Mathematical Sciences and Applications, vol. 14, pp. 283-294. Gakkōtosho, Tokyo (2000) · Zbl 0961.35164
[22] Moll, JS, The anisotropic total variation flow, Math. Ann., 332, 177-218, (2005) · Zbl 1109.35061
[23] Mosco, U, Convergence of convex sets and of solutions of variational inequalities, Adv. Math., 3, 510-585, (1969) · Zbl 0192.49101
[24] Ôtani, M.: Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators: Cauchy problems. J. Differential Equations 46(2), 268-299 (1982) · Zbl 0495.35042
[25] Shirakawa, K.: Stability analysis for Allen-Cahn equations involving indefinite diffusion coefficients. In: Mathematical Approach to Nonlinear Phenomena; Modelling, Analysis and Simulations. GAKUTO International Series, Mathematical Sciences and Applications, vol. 23, pp. 238-254. Gakkōtosho, Tokyo (2006) · Zbl 1154.35376
[26] Shirakawa, K.: Stability for phase field systems involving indefinite surface tension coefficients. In: Dissipative Phase Transitions. Ser. Adv. Math. Appl. Sci., vol. 71, pp. 269-288. World Scientific Publishing Co., Hackensack (2006) · Zbl 1102.35310
[27] Shirakawa, K., Ito, A., Yamazaki, N., Kenmochi, N.: Asymptotic stability for evolution equations governed by subdifferentials. In: Recent Development in Domain Decomposition Methods and Flow Problems. GAKUTO Internaternational Series, Mathematical Sciences and Applications, vol. 11, pp. 287-310. Gakkōtosho, Tokyo (1998) · Zbl 0928.35179
[28] Simon, J, Compact sets in the space \(L^p(0, T;B)\), Ann. Mat. Pura Appl., 146, 65-96, (1987) · Zbl 0629.46031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.