×

Numerical analysis of nodal sets for eigenvalues of Aharonov-Bohm Hamiltonians on the square with application to minimal partitions. (English) Zbl 1270.35025

Summary: This paper is devoted to presenting numerical simulations and a theoretical interpretation of results for determining the minimal \(k\)-partitions of a domain \(\Omega\). More precisely, using the double-covering approach introduced by B. Helffer, M. and T. Hoffmann-Ostenhof, and M. Owen and further developed for questions of isospectrality by the authors in collaboration with T. Hoffmann-Ostenhof and S. Terracini, we analyze the variation of the eigenvalues of the one-pole Aharonov- Bohm Hamiltonian on the square and the nodal picture of the associated eigenfunctions as a function of the pole. This leads us to discover new candidates for minimal \(k\)-partitions of the square with a specific topological type and without any symmetric assumption, in contrast to our previous works. This illustrates also recent results of B. Noris and S. Terracini [Indiana Univ. Math. J. 59, No. 4, 1361–1404 (2010; Zbl 1219.35054)]. This finally supports or disproves conjectures for the minimal 3- and 5-partitions on the square.

MSC:

35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P15 Estimates of eigenvalues in context of PDEs
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs

Citations:

Zbl 1219.35054

Software:

Triangle
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] DOI: 10.1002/mma.402 · Zbl 1045.81023
[2] DOI: 10.1007/s002200050598 · Zbl 0938.82063
[3] Helffer B., ”Numerical Analysis of Nodal Sets for Eigenvalues of Aharonov–Bohm Hamiltonians on the Square and Application to Minimal Partitions (2009)
[4] Vial G., ”Computations for Nodal Domains and Spectral Minimal Partitions. (2007)
[5] Helffer B., J. Phys. A 42 (2009)
[6] DOI: 10.1051/cocv:2008074
[7] DOI: 10.1137/080722588 · Zbl 1223.65075
[8] DOI: 10.1016/S0022-1236(02)00105-2 · Zbl 1091.35051
[9] DOI: 10.1007/s00526-004-0266-9 · Zbl 1132.35365
[10] DOI: 10.1512/iumj.2005.54.2506 · Zbl 1132.35397
[11] DOI: 10.1103/PhysRevE.71.046130
[12] Helffer [Helffer and Hoffmann-Ostenhof 10] B., Spectrum and Dynamics 52 pp 119– (2010)
[13] DOI: 10.1007/s002200050599 · Zbl 1042.81012
[14] DOI: 10.1016/j.anihpc.2007.07.004 · Zbl 1171.35083
[15] DOI: 10.1007/978-1-4419-1345-6_6 · Zbl 1230.35072
[16] DOI: 10.1090/S0002-9947-2010-04943-8 · Zbl 1208.35095
[17] DOI: 10.1016/j.cam.2005.06.019 · Zbl 1121.58027
[18] DOI: 10.1088/0305-4470/39/9/006 · Zbl 1089.58021
[19] Martin [Martin 07] D., ”Mélina, bibliothèque de calculs éléments finis.” (2007)
[20] DOI: 10.1512/iumj.2010.59.3964 · Zbl 1219.35054
[21] Shewchuk [Shewchuk 05] J. R., Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.