×

The GIT stability of polarized varieties via discrepancy. (English) Zbl 1271.14067

The main result of the paper under review is to prove that if \(X\) is an equidimensional reduced projective scheme satisfying Serre’s \(S_2\) condition which is Gorenstein at all codimension \(1\) points and such that \(K_X\) is \(\mathbb Q\)-Cartier, \(L\) is an ample line bundle on \(X\) and \((X,L)\) is \(K\)-semistable then \(X\) has only semi-log-canonical singularities. If moreover \(L=-mK_X\) for some \(m>0\) (i.e. \(X\) is Fano), then \(X\) is log terminal (and in particular normal).
Recall that semi-log-canonical singularities are the broadest class of singularities that naturally arise in the minimal model program in the context of constructing a compactified moduli space for varieties of general type; in dimension \(1\) they correspond to nodal curves.
The notion of \(K\)-stability arises in the context of differential geometry and is related to the existence of Kähler metrics with constant scalar curvature. It is known that asymptotic Chow semi-stability or asymptotic Hilbert semi-stability imply \(K\)-semi-stability.
The author had previously shown [Osaka J. Math. 50, No. 1, 171–185 (2013; Zbl 1328.14073)] that semi-log canonical polarized varieties \((X,L)\) with \(K_X=0\) are \(K\)-semistable and semi-log canonical polarized varieties \((X,L)\) with \(L=mK_X\) for some \(m>0\) are \(K\)-stable.

MSC:

14L24 Geometric invariant theory
14E30 Minimal model program (Mori theory, extremal rays)
32Q26 Notions of stability for complex manifolds

Citations:

Zbl 1328.14073
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] V. Alexeev, Log canonical singularities and complete moduli of stable pairs, 1996.
[2] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, ”Existence of minimal models for varieties of log general type,” J. Amer. Math. Soc., vol. 23, iss. 2, pp. 405-468, 2010. · Zbl 1210.14019
[3] S. K. Donaldson, ”Scalar curvature and stability of toric varieties,” J. Differential Geom., vol. 62, iss. 2, pp. 289-349, 2002. · Zbl 1074.53059
[4] S. K. Donaldson, ”Lower bounds on the Calabi functional,” J. Differential Geom., vol. 70, iss. 3, pp. 453-472, 2005. · Zbl 1149.53042
[5] S. K. Donaldson, Stability, birational transformations and the Kähler-Einstein problem, 2010. · Zbl 1382.32018
[6] P. Deligne and D. Mumford, ”The irreducibility of the space of curves of given genus,” Publ. Math. I.H.E.S., vol. 36, pp. 75-109, 1969. · Zbl 0181.48803
[7] W. Fulton, Intersection Theory, New York: Springer-Verlag, 1984, vol. 2. · Zbl 0541.14005
[8] D. Gieseker, Lectures on Moduli of Curves, Bombay: Tata Institute of Fundamental Research, 1982, vol. 69. · Zbl 0534.14012
[9] R. Hartshorne, Algebraic Geometry, New York: Springer-Verlag, 1977, vol. 52. · Zbl 0367.14001
[10] F. F. Knudsen and D. Mumford, ”The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”,” Math. Scand., vol. 39, iss. 1, pp. 19-55, 1976. · Zbl 0343.14008
[11] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge: Cambridge Univ. Press, 1998, vol. 134. · Zbl 0926.14003
[12] J. Kollár and N. I. Shepherd-Barron, ”Threefolds and deformations of surface singularities,” Invent. Math., vol. 91, iss. 2, pp. 299-338, 1988. · Zbl 0642.14008
[13] Flips and Abundance for Algebraic Threefolds, Kollár, J., Ed., Paris: Soc. Math. France, 1992, vol. 211. · Zbl 0782.00075
[14] J. Kollár, Book on Moduli of Surfaces. · Zbl 1322.14006
[15] C. Li and C. Xu, Special test configurations and \(K\)-stability of \(\mathbbQ\)-Fano varieties, 2011.
[16] S. Mori, ”Threefolds whose canonical bundles are not numerically effective,” Ann. of Math., vol. 116, iss. 1, pp. 133-176, 1982. · Zbl 0557.14021
[17] D. Mumford, Geometric Invariant Theory, New York: Springer-Verlag, 1965. · Zbl 0147.39304
[18] D. Mumford, ”Stability of Projective Varieties,” Enseign. Math. (2), vol. 23, pp. 39-110, 1977. · Zbl 0363.14003
[19] Y. Odaka, A generalization of the Ross-Thomas slope theory. · Zbl 1328.14073
[20] Y. Odaka, ”The Calabi conjecture and K-stability,” Internat. Math. Res. Not., vol. 2012, p. no. 10, 2272-2288. · Zbl 1484.32043
[21] Y. Odaka, On parametrization, optimization and triviality of test configurations, 2012. · Zbl 1331.14046
[22] Y. Odaka and C. Xu, Log-canonical models of singular pairs and its applications. · Zbl 1278.14024
[23] J. Ross and R. Thomas, ”A study of the Hilbert-Mumford criterion for the stability of projective varieties,” J. Algebraic Geom., vol. 16, iss. 2, pp. 201-255, 2007. · Zbl 1200.14095
[24] J. Shah, ”Stability of two-dimensional local rings. I,” Invent. Math., vol. 64, iss. 2, pp. 297-343, 1981. · Zbl 0475.14028
[25] N. I. Shepherd-Barron, ”Degenerations with numerically effective canonical divisor,” in The Birational Geometry of Degenerations, Boston, MA: Birkhäuser, 1983, vol. 29, pp. 33-84. · Zbl 0506.14028
[26] J. Stoppa, A note on the definition of K-stability, 2011. · Zbl 1250.14036
[27] G. Tian, ”Kähler-Einstein metrics with positive scalar curvature,” Invent. Math., vol. 130, iss. 1, pp. 1-37, 1997. · Zbl 0892.53027
[28] W. Vasconcelos, Integral Closure: Rees Algebras, Multiplicities, Algorithms, New York: Springer-Verlag, 2005. · Zbl 1082.13006
[29] X. Wang, ”Heights and GIT weights,” Math. Res. Lett., vol. 19, p. 18, 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.