×

zbMATH — the first resource for mathematics

Monotone matrix maps and Skolem-Noether theorem. (English. Russian original) Zbl 1271.15020
Mosc. Univ. Math. Bull. 67, No. 5-6, 221-223 (2012); translation from Vestn. Mosk. Univ., Ser. I 67, No. 5, 46-49 (2012).
Summary: Monotone matrix maps induced by a group inverse are considered. The characterization is given in additive and continuous cases. The ring version of the Skolem-Noether theorem is obtained. A series of examples of nonlinear monotone maps is presented.
MSC:
15B48 Positive matrices and their generalizations; cones of matrices
15A09 Theory of matrix inversion and generalized inverses
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. De Pillis, ”Linear Transformations Which Preserve Hermitian and Positive Semidefinite Operators,” Pacif. J. Math. 23. 129 (1967). · Zbl 0166.30003 · doi:10.2140/pjm.1967.23.129
[2] A. Guterman, ”Linear Preservers for Drazin Star Partial Order,” Communs Algebra. 29(9), 3905 (2001). · Zbl 0995.15010 · doi:10.1081/AGB-100105980
[3] A. Guterman, ”Linear Preservers for Matrix Inequalities and Partial Orderings,” Linear Algebra and Its Appl. 331(1–3), 75 (2001). · Zbl 0985.15018 · doi:10.1016/S0024-3795(01)00280-4
[4] A. V. Mikhalev, ”Isomorphisms and Anti-Isomorphisms of Endomorphism Rings of Modules,” in: First Int. Tainan-Moscow Algebra Workshop (Walter de Gruyter & Co, Berlin, N.Y., 1995), pp. 69–122.
[5] S. Pierce, M. H. Lim, R. Loew, C. K. Li, N. K. Tsing, B. McDonald, and L. Beasley, ”A Survey of Linear Preserver Problems,” Linear and Multilinear Algebra 33, 1 (1992). · doi:10.1080/03081089208818176
[6] J. K. Baksalary, F. Pukelsheim, and G. P. H. Styan, ”Some Properties of Matrix Partial Orderings,” Linear Algebra and Its Appl. 119, 57 (1989). · Zbl 0681.15005 · doi:10.1016/0024-3795(89)90069-4
[7] P. G. Ovchinnikov, ”Automorphisms of the Poset of Skew Projections,” J. Funct. Anal. 115, 184 (1993). · Zbl 0806.46069 · doi:10.1006/jfan.1993.1086
[8] P. Šemrl, ”Order-Preserving Maps on the Poset of Idempotent Matrices,” Acta sci. math. (Szeged) 69, 481 (2003). · Zbl 1049.06003
[9] P. Legiša, ”Automorphisms of Mn, Partially Ordered by Rank Subtractivity Ordering,” Linear Algebra and Its Appl. 389, 147 (2004). · Zbl 1080.15017 · doi:10.1016/j.laa.2004.03.024
[10] S. K. Mitra, ”A New Class of g-Inverse of Square Matrices,” Sankhya, Ser. A. 30, 323 (1963).
[11] S. K. Mitra, ”On Group Inverses and the Sharp Order,” Linear Algebra and Its Appl. 92, 17 (1987). · Zbl 0619.15006 · doi:10.1016/0024-3795(87)90248-5
[12] A. Ben-Israel and T. Greville, Generalized Inverses: Theory and Applications (John Wiley and Sons, N.Y., 1974).
[13] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications (Wiley, N.Y., 1971). · Zbl 0236.15004
[14] R. E. Hartwig, ”How to Partially Order Regular Elements,” Math. Japonica 25(1), 1 (1980). · Zbl 0442.06006
[15] K. S. S. Nambooripad, ”The Natural Partial Order on a Regular Semigroup,” Proc. Edinburgh Math. Soc. 23, 249 (1980). · Zbl 0459.20054 · doi:10.1017/S0013091500003801
[16] R. E. Hartwig and S. K. Mitra, ”Partial Orders Based on Outer Inverses,” Linear Algebra and Its Appl. 176, 3 (1992). · Zbl 0778.15003 · doi:10.1016/0024-3795(92)90206-P
[17] I. I. Bogdanov and A. E. Guterman, ”Monotone Matrix Transformations Defined by the Group Inverse and Simultaneous Diagonalizability,” Matem. Sborn. 198(1), 3 (2007) [Sbornik Math. 198 (1), 1 (2007)]. · Zbl 1142.15004
[18] M. A. Efimov, ”Linear Matrix Transformations that Are Monotone with Respect to the \(\mathop \leqslant \limits^\# ,\mathop \leqslant \limits^{cn}\) -Orders,” Fund. i Prikl. Matem. 13(4), 53 (2007). [J. Math. Sci. 155 (6), 830 (2008)].
[19] R. S. Pierce, Associative Algebras (Springer, 1982; Mir, Moscow, 1986). · Zbl 0497.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.