Chanillo, Sagun; Chiu, Hung-Lin; Yang, Paul Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants. (English) Zbl 1271.32040 Duke Math. J. 161, No. 15, 2909-2921 (2012). It is well known that the question of embeddability of a hypersurface type CR structure has special character in dimension \(3\). In this article, the authors derive sufficient conditions for global embeddability of a \(3\)-dimensional CR manifold into some \(\mathbb C^n\) in terms of CR-covariant differential operators. The main role is played by the CR-Paneitz operator, which is of order \(4\). The main result is that non-negativity of the Paneitz operator together with positivity of the Webster-Tanaka curvature (or of the CR-Yamabe invariant) implies global embeddability.The main ingredient in the proof is a Bochner formula for the Kohn-Laplacian, in which the pseudo-Hermitian torsion does not occur. Via this formula, the above assumptions are sufficient to derive a lower bound on non-zero eigenvalues of the Kohn-Laplacian. This in turn implies closedness of its range and then, via a theorem of Kohn, global embeddability. Finally, the authors prove a result on stability of an embeddable \(3\)-dimensional CR structure. Reviewer: Andreas Cap (Wien) Cited in 3 ReviewsCited in 33 Documents MSC: 32V30 Embeddings of CR manifolds 32V20 Analysis on CR manifolds 32V05 CR structures, CR operators, and generalizations Keywords:3-dimensional CR structure; global embeddability; CR invariant differential operator; CR Paeneitz operator; Kohn Laplacian × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] A. Andreotti and Y.-T. Siu, Projective embedding of pseudoconcave spaces , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 24 (1970), 231-278. · Zbl 0195.36901 [2] J. S. Bland, Contact geometry and CR structures on \(S^{3}\) , Acta Math. 172 (1994), 1-49. · Zbl 0814.32002 · doi:10.1007/BF02392789 [3] J. S. Bland and T. Duchamp, Moduli for pointed convex domains , Invent. Math. 104 (1991), 61-112. · Zbl 0731.32010 · doi:10.1007/BF01245067 [4] L. Boutet de Monvel, “Intégration des équations de Cauchy-Riemann induites formelles” in Séminaire Goulaouic-Lions-Schwartz 1974-1975 , Centre de Mathématiques, École Polytechnique, Paris, 1975, Exp. No. 9, 14 pp. [5] D. M. Burns and C. L. Epstein, Embeddability for three-dimensional CR-manifolds , J. Amer. Math. Soc. 3 (1990), 809-841. · Zbl 0736.32017 · doi:10.2307/1990904 [6] J. Cao and S.-C. Chang, Pseudo-Einstein and Q-flat metrics with eigenvalue estimates on CR-hypersurfaces , Indiana Univ. Math. J. 56 (2007), 2839-2857. · Zbl 1155.32024 · doi:10.1512/iumj.2007.56.3111 [7] S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables , AMS/IP Stud. Adv. Math. 19 , International Press, Boston, 2001. · Zbl 0963.32001 [8] j.-H. Cheng, A. Malchiodi, and P. Yang, A positive mass theorem in three-dimensional Cauchy-Riemann geometry , in preparation. · Zbl 1360.32031 [9] H.-L. Chiu, The sharp lower bound for the first positive eigenvalue of the sublaplacian on a pseudohermitian 3-manifold , Ann. Global Anal. Geom. 30 (2006), 81-96. · Zbl 1098.32017 · doi:10.1007/s10455-006-9033-9 [10] C. L. Epstein, A relative index on the space of embeddable CR-structures, I , Ann. of Math. (2) 147 (1998), 1-59. · Zbl 0942.32025 · doi:10.2307/120982 [11] C. L. Epstein, A relative index on the space of embeddable CR-structures, II , Ann. of Math. (2) 147 (1998), 61-91. · Zbl 0942.32026 · doi:10.2307/120983 [12] C. R. Graham and J. M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains , Duke Math. J. 57 (1988), 697-720. · Zbl 0699.35112 · doi:10.1215/S0012-7094-88-05731-6 [13] K. Hirachi, “Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds” in Complex Geometry (Osaka, 1990) , Lect. Notes Pure Appl. Math. 143 , Dekker, New York, 1993, 67-76. · Zbl 0805.32014 [14] J. J. Kohn, The range of the tangential Cauchy-Riemann operator , Duke. Math. J. 53 (1986), 525-545. · Zbl 0609.32015 · doi:10.1215/S0012-7094-86-05330-5 [15] J. M. Lee, Pseudo-Einstein structures on CR Manifolds , Amer. J. Math. 110 (1988), 157-178. · Zbl 0638.32019 · doi:10.2307/2374543 [16] L. Lempert, Holomorphic invariants, normal forms, and the moduli space of convex domains , Ann. of Math. (2) 128 (1988), 43-78. · Zbl 0658.32015 · doi:10.2307/1971462 [17] L. Lempert, On three-dimensional Cauchy-Riemann manifolds , J. Amer. Math. Soc. 5 (1992), 923-969. · Zbl 0781.32014 · doi:10.2307/2152715 [18] L. Lempert, Embeddings of three-dimensional Cauchy-Riemann manifolds , Math. Ann. 300 (1994), 1-15. · Zbl 0817.32009 · doi:10.1007/BF01450472 [19] H. Rossi, “Attaching analytic spaces to an analytic space along a pseudoconvex boundary” in Proceedings of the Conference on Complex Analysis (Minneapolis, 1964) , Springer, Berlin, 1965, 242-256. · Zbl 0143.30301 [20] N. Tanaka, A Differential Geometric Study on Strongly Pseudo-Convex Manifolds , Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9, Kinokuniya Book-Store, Tokyo, 1975. · Zbl 0331.53025 [21] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface , J. Differential Geom. 13 (1978), 25-41. · Zbl 0379.53016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.