×

Rank gradient, cost of groups and the rank versus Heegaard genus problem. (English) Zbl 1271.57046

The paper under review links two important problems, one in the field of low-dimensional topology and hyperbolic geometry, and one in the field of topological dynamics. The former is known as the Rank vs. Heegard genus Conjecture and asserts that for an orientable, compact \(3\)-dimensional hyperbolic manifold its Heegard genus equals the rank of its fundamental group. The latter problem asks whether every countable group has fixed price, i.e. whether every essentially free measure-preserving Borel action of such a group has the same cost. The core result of the paper (Theorem 2) sounds as follows: either the Rank vs. Heegaard genus conjecture is false or the fixed price problem has a negative solution.
Another important result of the paper is a formula (Theorem 1) relating the rank gradient of a Farber chain \((\Gamma_n)\) of subgroups of a finitely generated group \(\Gamma\) with the cost of the action of \(\Gamma\) on the boundary of the coset tree w.r.t. \((\Gamma_n)\). Theorem 1 is one of the main features leading to the core result of the paper.
Also Theorem 1 allows the authors to establish the fact that the rank gradient of a Farber chain in any residually finite group with an infinite amenable normal subgroup is zero (Theorem 3).

MSC:

57M50 General geometric structures on low-dimensional manifolds
57N10 Topology of general \(3\)-manifolds (MSC2010)
57M05 Fundamental group, presentations, free differential calculus
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
37B99 Topological dynamics

References:

[1] Abért, M.: On chains of subgroups in residually finite groups. Preprint · Zbl 1035.20001
[2] Abért, M., Jaikin-Zapirain, A., Nikolov, N.: The rank gradient from a combinatorial view- point. Groups Geom. Dynam. 5, 213-230 (2011) · Zbl 1284.20047 · doi:10.4171/GGD/124
[3] Abért, M., Virág, B.: Dimension and randomness in groups acting on rooted trees. J. Amer. Math. Soc. 18, 157-192 (2005) · Zbl 1135.20015 · doi:10.1090/S0894-0347-04-00467-9
[4] Abért, M., Weiss, B.: Bernoulli actions are weakly contained in any free action. Ergodic The- ory Dynam. Systems, to appear · Zbl 1268.37006 · doi:10.1017/S0143385711000988
[5] Agol, I.: Criteria for virtual fibering. J. Topology 1, 269-284 (2008) · Zbl 1148.57023 · doi:10.1112/jtopol/jtn003
[6] Bergeron, N., Gaboriau, D.: Asymptotique des nombres de Betti, L2-invariants et laminations. Comment. Math. Helv. 79, 362-395 (2004) · Zbl 1061.55005 · doi:10.1007/s00014-003-0798-1
[7] Boileau, M., Zieschang, H.: Heegaard genus of closed orientable Seifert 3-manifolds. Invent. Math. 76, 455-468 (1984) · Zbl 0538.57004 · doi:10.1007/BF01388469
[8] Dooley, A. H., Golodets, V. Ya.: The cost of an equivalence relation is determined by the cost of a finite index subrelation. Preprint
[9] Farber, M.: Geometry of growth: approximation theorems for L2 invariants. Math. Ann. 311, 335-375 (1998) · Zbl 0911.53026 · doi:10.1007/s002080050190
[10] Gaboriau, D.: Invariants l2 de relations d’équivalence et de groupes. Publ. Math. Inst. Hautes Études Sci. 95, 93-150 (2002) · Zbl 1022.37002 · doi:10.1007/s102400200002
[11] Gaboriau, D.: Co\hat ut des relations d’équivalence et des groupes. Invent. Math. 139, 41-98 (2000) · Zbl 0939.28012 · doi:10.1007/s002229900019
[12] Grigorchuk, R. I., Nekrashevich, V. V., Suschanskii, V. I.: Automata, dynamical systems, and groups. Proc. Steklov Inst. Math. 231, 128-203 (2000) · Zbl 1155.37311
[13] Gruschko, I.: Über die Basen eines freien Produktes von Gruppen. Rec. Math. [Mat. Sbornik] N.S. 8 (50), 169-182 (1940) (in Russian; German summary) · Zbl 0023.30102
[14] Kechris, A. S.: Weak containment in the space of actions of a free group. Israel J. Math. 189, 461-507 (2012) · Zbl 1273.37003 · doi:10.1007/s11856-011-0182-6
[15] Kechris, A. S., Miller, B.: Topics in Orbit Equivalence. Lecture Notes in Math. 1852, Springer, Berlin (2004) · Zbl 1058.37003 · doi:10.1007/b99421
[16] Lackenby, M.: Heegaard splittings, the virtually Haken conjecture and property \tau . Invent. Math. 164, 317-359 (2006) · Zbl 1110.57015 · doi:10.1007/s00222-005-0480-x
[17] Lackenby, M.: Expanders, rank and graphs of groups. Israel J. Math. 146, 357-370 (2005) · Zbl 1066.22008 · doi:10.1007/BF02773541
[18] Levitt, G.: On the cost of generating an equivalence relation. Ergodic Theory Dynam. Systems 15, 1173-1181 (1995) · Zbl 0843.28010 · doi:10.1017/S0143385700009846
[19] Lubotzky, A.: Eigenvalues of the Laplacian, the first Betti number and the congruence sub- group problem. Ann. of Math. (2) 144, 441-452 (1996) · Zbl 0885.11037 · doi:10.2307/2118597
[20] Lück, W.: L2-invariants: Theory and Applications to Geometry and K-Theory. Ergeb. Math. Grenzgeb. 44, Springer, Berlin (2002) · Zbl 1009.55001
[21] Neumann, B. H.: On the number of generators of a free product. J. London Math. Soc. 18, 12-20 (1943) · Zbl 0028.33901 · doi:10.1112/jlms/s1-18.1.12
[22] Osin, D.: Rank gradient and torsion groups. Bull. London Math. Soc. 43, 10-16 (2011) · Zbl 1245.20044 · doi:10.1112/blms/bdq075
[23] Reid, A.: A non-Haken hyperbolic 3-manifold covered by a surface bundle. Pacific J. Math. 167, 163-182 (1995) · Zbl 0817.57014 · doi:10.2140/pjm.1995.167.163
[24] Sarnak, P., Xue, X. X.: Bounds for multiplicities of automorphic representations. Duke Math. J. 64, 207-227 (1991) · Zbl 0741.22010 · doi:10.1215/S0012-7094-91-06410-0
[25] Schlage-Puchta, J.-C.: A p-group with positive rank gradient. J. Group Theory 15, 261-270 (2012) · Zbl 1259.20046 · doi:10.1515/jgt.2011.101
[26] Schultens, J., Weidman, R.: On the geometric and the algebraic rank of graph manifolds. Pacific J. Math. 231, 481-510 (2007) · Zbl 1171.57020 · doi:10.2140/pjm.2007.231.481
[27] Shalen, P.: Hyperbolic volume, Heegaard genus and ranks of groups, In: Workshop on Hee- gaard Splittings (Haifa, Israel, 2005), Geom. Topol. Monogr. 12, Geom. Topol. Publ., Coven- try, 335-349 (2007) · Zbl 1140.57009 · doi:10.2140/gtm.2007.12.335
[28] Sharma, R., Venkataramana, T. N.: Generations of arithmetic groups. Geom. Dedicata 114, 103-146 (2005) · Zbl 1112.20044 · doi:10.1007/s10711-005-0123-9
[29] Stillwell, J.: Classical Topology and Combinatorial Group Theory. 2nd ed., Springer (1993) · Zbl 0774.57002
[30] Stuck, G., Zimmer, R. J.: Stabilizers for ergodic actions of higher rank semisimple groups. Ann. of Math. (2) 139, 723-747 (1994) · Zbl 0836.22018 · doi:10.2307/2118577
[31] Thurston, W.: Geometry and Topology of 3-Manifolds. Lecture notes, Princeton Univ. (1978)
[32] Waldhausen, F.: Some problems on 3-manifolds. In: Proc. Sympos. Pure Math. 32, part 2, Amer. Math. Soc., 313-322 (1978) · Zbl 0397.57007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.