×

Multinomial goodness-of-fit tests under inlier modification. (English) Zbl 1271.62110

Summary: Pearson’s chi-square and the log-likelihood ratio chi-square statistics are fundamental tools in multinomial goodness-of-fit testing. N. Cressie and T. R. C. Read [J. R. Stat. Soc., Ser. B 46, 440–464 (1984; Zbl 0571.62017)] constructed a general family of divergences which includes both statistics as special cases. This family is indexed by a single real parameter. Divergences at one end of the scale are powerful against deviations of one type while being poor against deviations of the other type. The reverse property holds for divergences at the other end of the scale. Several other families of divergences available in the literature also show similar behavior. We present several inlier control techniques in the context of multinomial goodness-of-fit testing which generate procedures having reasonably high powers for both kinds of alternatives. We explain the motivation behind the construction of the inlier modified test statistics, establish the asymptotic null distribution of the inlier modified statistics and explore their performance through simulation and real data examples to substantiate the theory developed.

MSC:

62G35 Nonparametric robustness
62G10 Nonparametric hypothesis testing

Citations:

Zbl 0571.62017
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Agresti, A., Categorical data analysis . John Wiley & Sons Inc., New York, 1990. · Zbl 0716.62001
[2] Alin, A. A note on penalized power-divergence test statistics., Int. J. Math. Sci. (WASET) 1 , 3 (2007), 209-215 (electronic).
[3] Alin, A. Comparison of Ordinary and Penalized Power-Divergence Test Statistics for Small and Moderate Samples in Three-Way Contingency Tables via Simulation., Comm. Statist. Simulation Comput. 37 , 8 (2008), 1593-1602. · Zbl 1286.62055 · doi:10.1080/03610910802050894
[4] Alin, A., and Kurt, S. Ordinary and penalized minimum power-divergence estimators in two-way contingency tables., Comput. Statist. 23 , 3 (2008), 455-468. · Zbl 1223.62093 · doi:10.1007/s00180-007-0088-2
[5] Basu, A., and Basu, S. Penalized minimum disparity methods for multinomial models., Statist. Sinica 8 , 3 (1998), 841-860. · Zbl 0905.62030
[6] Basu, A., Harris, I., and Basu, S. Tests of hypotheses in discrete models based on the penalized Hellinger distance., Statist. Probab. Lett. 27 , 4 (1996), 367-373. · Zbl 0849.62012 · doi:10.1016/0167-7152(95)00101-8
[7] Basu, A., Harris, I. R., and Basu, S. Minimum distance estimation: the approach using density-based distances. In, Robust inference , vol. 15 of Handbook of Statist. North-Holland, Amsterdam, 1997, pp. 21-48. · Zbl 0906.62019 · doi:10.1016/S0169-7161(97)15004-0
[8] Basu, A., and Lindsay, B. G. Minimum disparity estimation for continuous models: efficiency, distributions and robustness., Ann. Inst. Statist. Math. 46 , 4 (1994), 683-705. · Zbl 0821.62018 · doi:10.1007/BF00773476
[9] Basu, A., Mandal, A., and Pardo, L. Hypothesis testing for two discrete populations based on the Hellinger distance., Statist. Probab. Lett. 80 (2010), 206-214. · Zbl 1180.62031 · doi:10.1016/j.spl.2009.10.008
[10] Basu, A., Ray, S., Park, C., and Basu, S. Improved power in multinomial goodness-of-fit tests., The Statistician 51 , 3 (2002), 381-393. · doi:10.1111/1467-9884.00325
[11] Basu, A., and Sarkar, S. On disparity based goodness-of-fit tests for multinomial models., Statist. Probab. Lett. 19 , 4 (1994), 307-312. · Zbl 0791.62047 · doi:10.1016/0167-7152(94)90181-3
[12] Birch, M. W. A new proof of the Pearson-Fisher theorem., Ann. Math. Statist 35 (1964), 817-824. · Zbl 0259.62017 · doi:10.1214/aoms/1177703581
[13] Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W., Discrete multivariate analysis: theory and practice . The MIT Press, Cambridge, Massachusetts, 1975. · Zbl 0332.62039
[14] Cressie, N., and Read, T. R. C. Multinomial goodness-of-fit tests., J. Roy. Statist. Soc. Ser. B 46 , 3 (1984), 440-464. · Zbl 0571.62017
[15] Csiszár, I. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten., Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), 85-108. · Zbl 0124.08703
[16] Harris, I. R., and Basu, A. Hellinger distance as a penalized log likelihood., Comm. Statist. Simulation Comput. 23 , 4 (1994), 1097-1113. · Zbl 04522399 · doi:10.1080/03610919408813219
[17] Hout, M., Duncan, O., and Sobel, M. Association and heterogeneity: Structural models of similarities and differences., Sociological Methodology 17 (1987), 145-184.
[18] Lindsay, B. G. Efficiency versus robustness: the case for minimum Hellinger distance and related methods., Ann. Statist. 22 , 2 (1994), 1081-1114. · Zbl 0807.62030 · doi:10.1214/aos/1176325512
[19] Mandal, A., Minimum Disparity Inference: Strategies for Improvement in Efficiency . PhD thesis, Indian Statistical Institute, Kolkata, India, 2010.
[20] Mandal, A., Bhandari, S. K., and Basu, A. Minimum disparity estimation based on combined disparities: Asymptotic results., J. Statist. Plann. Inference 141 , 2 (2011), 701-710. · Zbl 1209.62028 · doi:10.1016/j.jspi.2010.07.017
[21] Mandal, A., Pardo, L., and Basu, A. Minimum disparity inference and the empty cell penalty: Asymptotic results., Sankhyā Ser. A 72 , 2 (2010), 376-406. · Zbl 1213.62042 · doi:10.1007/s13171-010-0022-5
[22] Pardo, L., and Pardo, M. C. Minimum power-divergence estimator in three-way contingency tables., J. Stat. Comput. Simul. 73 , 11 (2003), 819-831. · Zbl 1053.62073 · doi:10.1080/0094965031000097782
[23] Pardo, M. C. Improving the accuracy of goodness-of-fit tests based on Rao’s divergence with small sample size., Comput. Statist. Data Anal. 28 , 4 (1998), 339-351. · Zbl 1042.62537 · doi:10.1016/S0167-9473(98)90131-1
[24] Park, C., Basu, A., and Basu, S. Robust minimum distance inference based on combined distances., Comm. Statist. Simulation Comput. 24 , 3 (1995), 653-673. · Zbl 0850.62243 · doi:10.1080/03610919508813265
[25] Park, C., Basu, A., and Harris, I. R. Tests of hypotheses in multiple samples based on penalized disparities., J. Korean Statist. Soc. 30 , 3 (2001), 347-366.
[26] Patra, R. K., Mandal, A., and Basu, A. Minimum Hellinger Distance Estimation with Inlier Modification., Sankhyā Ser. B 70 , 2 (2008), 310-322. · Zbl 1192.62069
[27] Read, T. R. C. Closer asymptotic approximations for the distributions of the power divergence goodness-of-fit statistics., Ann. Inst. Statist. Math. 36 , 1 (1984a), 59-69. · Zbl 0554.62015 · doi:10.1007/BF02481953
[28] Read, T. R. C. Small-sample comparisons for the power divergence goodness-of-fit statistics., J. Amer. Statist. Assoc. 79 , 388 (1984b), 929-935. · doi:10.1080/01621459.1984.10477113
[29] Read, T. R. C., and Cressie, N. A. C., Goodness-of-fit statistics for discrete multivariate data . Springer Series in Statistics. Springer-Verlag, New York, 1988. · Zbl 0663.62065
[30] Shin, D. W., Basu, A., and Sarkar, S. Comparisons of the blended weight Hellinger distance based goodness-of-fit test statistics., Sankhyā Ser. B 57 , 3 (1995), 365-376. · Zbl 0856.62026
[31] Shin, D. W., Basu, A., and Sarkar, S. Small sample comparisons for the blended weight chi-square goodness-of-fit test statistics., Comm. Statist. Theory Methods 25 , 1 (1996), 211-226. · Zbl 0875.62175 · doi:10.1080/03610929608831689
[32] Yan, H., Generalized minimum penalized Hellinger distance estimation and generalized penalized Hellinger deviance testing for discrete generalized linear models. PhD thesis, Utah State University, Utah, USA, 2001.
[33] Zografos, K., Ferentinos, K., and Papaioannou, T. Divergence statistics: sampling properties and multinomial goodness of fit and divergence tests., Communications in Statistics-Theory and Methods 19 , 5 (1990), 1785-1802. · Zbl 0724.62007 · doi:10.1080/03610929008830290
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.